A framework for adaptive mail classification

G. Manco, E. Masciari, Andrea Tagarelli
{"title":"A framework for adaptive mail classification","authors":"G. Manco, E. Masciari, Andrea Tagarelli","doi":"10.1109/TAI.2002.1180829","DOIUrl":null,"url":null,"abstract":"We introduce a technique based on data mining algorithms for classifying incoming messages, as a basis for an overall architecture for maintenance and management of e-mail messages. We exploit clustering techniques for grouping structured and unstructured information extracted from e-mail messages in an unsupervised way, and exploit the resulting algorithm in the process of folder creation (and maintenance) and e-mail redirection. Some initial experimental results show the effectiveness of the technique, both from an efficiency and a quality-of-results viewpoint.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We introduce a technique based on data mining algorithms for classifying incoming messages, as a basis for an overall architecture for maintenance and management of e-mail messages. We exploit clustering techniques for grouping structured and unstructured information extracted from e-mail messages in an unsupervised way, and exploit the resulting algorithm in the process of folder creation (and maintenance) and e-mail redirection. Some initial experimental results show the effectiveness of the technique, both from an efficiency and a quality-of-results viewpoint.
用于自适应邮件分类的框架
我们介绍了一种基于数据挖掘算法的技术,用于对传入消息进行分类,作为维护和管理电子邮件消息的总体体系结构的基础。我们利用聚类技术以无监督的方式对从电子邮件消息中提取的结构化和非结构化信息进行分组,并在文件夹创建(和维护)和电子邮件重定向过程中利用生成的算法。从效率和结果质量的角度来看,一些初步的实验结果表明了该技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信