Evaluation of Deep Learning Techniques in Sentiment Analysis from Twitter Data

Dionysis Goularas, Sani Kamis
{"title":"Evaluation of Deep Learning Techniques in Sentiment Analysis from Twitter Data","authors":"Dionysis Goularas, Sani Kamis","doi":"10.1109/Deep-ML.2019.00011","DOIUrl":null,"url":null,"abstract":"This study presents a comparison of different deep learning methods used for sentiment analysis in Twitter data. In this domain, deep learning (DL) techniques, which contribute at the same time to the solution of a wide range of problems, gained popularity among researchers. Particularly, two categories of neural networks are utilized, convolutional neural networks(CNN), which are especially performant in the area of image processing and recurrent neural networks (RNN) which are applied with success in natural language processing (NLP) tasks. In this work we evaluate and compare ensembles and combinations of CNN and a category of RNN the long short-term memory (LSTM) networks. Additionally, we compare different word embedding systems such as the Word2Vec and the global vectors for word representation (GloVe) models. For the evaluation of those methods we used data provided by the international workshop on semantic evaluation (SemEval), which is one of the most popular international workshops on the area. Various tests and combinations are applied and best scoring values for each model are compared in terms of their performance. This study contributes to the field of sentiment analysis by analyzing the performances, advantages and limitations of the above methods with an evaluation procedure under a single testing framework with the same dataset and computing environment.","PeriodicalId":228378,"journal":{"name":"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Deep-ML.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

This study presents a comparison of different deep learning methods used for sentiment analysis in Twitter data. In this domain, deep learning (DL) techniques, which contribute at the same time to the solution of a wide range of problems, gained popularity among researchers. Particularly, two categories of neural networks are utilized, convolutional neural networks(CNN), which are especially performant in the area of image processing and recurrent neural networks (RNN) which are applied with success in natural language processing (NLP) tasks. In this work we evaluate and compare ensembles and combinations of CNN and a category of RNN the long short-term memory (LSTM) networks. Additionally, we compare different word embedding systems such as the Word2Vec and the global vectors for word representation (GloVe) models. For the evaluation of those methods we used data provided by the international workshop on semantic evaluation (SemEval), which is one of the most popular international workshops on the area. Various tests and combinations are applied and best scoring values for each model are compared in terms of their performance. This study contributes to the field of sentiment analysis by analyzing the performances, advantages and limitations of the above methods with an evaluation procedure under a single testing framework with the same dataset and computing environment.
推特数据情感分析中深度学习技术的评价
本研究对Twitter数据中用于情感分析的不同深度学习方法进行了比较。在这个领域,深度学习(DL)技术,同时有助于解决广泛的问题,受到研究人员的欢迎。特别是,使用了两类神经网络:卷积神经网络(CNN),它在图像处理领域表现特别出色;递归神经网络(RNN),它成功地应用于自然语言处理(NLP)任务。在这项工作中,我们评估和比较了CNN和RNN的长短期记忆(LSTM)网络的集成和组合。此外,我们比较了不同的词嵌入系统,如Word2Vec和全局向量词表示(GloVe)模型。为了评估这些方法,我们使用了语义评估国际研讨会(SemEval)提供的数据,该研讨会是该领域最受欢迎的国际研讨会之一。应用了各种测试和组合,并根据其性能比较了每个模型的最佳得分值。本研究通过在相同数据集和计算环境下的单一测试框架下的评估程序,分析上述方法的性能,优点和局限性,为情感分析领域做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信