{"title":"Approximate analysis of priority scheduling systems using stochastic reward nets","authors":"V. Mainkar, Kishor S. Trivedi","doi":"10.1109/ICDCS.1993.287678","DOIUrl":null,"url":null,"abstract":"Presents a performance analysis of a heterogeneous multiprocessor system where tasks may arrive from Poisson sources as well as by spawning and probabilistic branching of other tasks. Non-preemptive priority scheduling is used between different tasks. Stochastic reward nets are used as the system model, and are solved analytically by generating the underlying continuous-time Markov chain. An approximation technique is used, that is based on fixed-point iteration to avoid the problem of a large underlying Markov chain. The iteration scheme works reasonably well, and the existence of a fixed point for the iterative scheme is guaranteed under certain conditions.<<ETX>>","PeriodicalId":249060,"journal":{"name":"[1993] Proceedings. The 13th International Conference on Distributed Computing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings. The 13th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.1993.287678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Presents a performance analysis of a heterogeneous multiprocessor system where tasks may arrive from Poisson sources as well as by spawning and probabilistic branching of other tasks. Non-preemptive priority scheduling is used between different tasks. Stochastic reward nets are used as the system model, and are solved analytically by generating the underlying continuous-time Markov chain. An approximation technique is used, that is based on fixed-point iteration to avoid the problem of a large underlying Markov chain. The iteration scheme works reasonably well, and the existence of a fixed point for the iterative scheme is guaranteed under certain conditions.<>