Multiresolution image segmentation

M. Comer, E. Delp
{"title":"Multiresolution image segmentation","authors":"M. Comer, E. Delp","doi":"10.1109/ICASSP.1995.479980","DOIUrl":null,"url":null,"abstract":"In this paper we present a new algorithm for segmentation of noisy or textured images using a multiresolution Bayesian approach. Our algorithm is different from previously proposed multiresolution segmentation techniques in that we use a multiresolution Gaussian autoregressive (AR) model for the pyramid representation of the observed image. Our algorithm also approximates the \"maximization of the posterior marginals\" (MPM) estimate of the pixel class labels at each resolution, from coarsest to finest, unlike previously proposed techniques, which have been based on MAP estimation. Experimental results are presented to demonstrate the performance of the new algorithm.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In this paper we present a new algorithm for segmentation of noisy or textured images using a multiresolution Bayesian approach. Our algorithm is different from previously proposed multiresolution segmentation techniques in that we use a multiresolution Gaussian autoregressive (AR) model for the pyramid representation of the observed image. Our algorithm also approximates the "maximization of the posterior marginals" (MPM) estimate of the pixel class labels at each resolution, from coarsest to finest, unlike previously proposed techniques, which have been based on MAP estimation. Experimental results are presented to demonstrate the performance of the new algorithm.
多分辨率图像分割
在本文中,我们提出了一种新的算法分割噪声或纹理图像使用多分辨率贝叶斯方法。我们的算法不同于以前提出的多分辨率分割技术,因为我们使用多分辨率高斯自回归(AR)模型来表示观察到的图像的金字塔。与之前提出的基于MAP估计的技术不同,我们的算法还近似于每个分辨率下像素类标签的“后验边际最大化”(MPM)估计,从最粗到最细。实验结果验证了新算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信