Ensemble clustering model of hyperspectral image segmentation

Mengmeng Wu, Yuefeng Zhao, Liren Zhang, Jingjing Wang, Huaqiang Xu, Dongmei Wei
{"title":"Ensemble clustering model of hyperspectral image segmentation","authors":"Mengmeng Wu, Yuefeng Zhao, Liren Zhang, Jingjing Wang, Huaqiang Xu, Dongmei Wei","doi":"10.1109/ICAIT.2017.8388945","DOIUrl":null,"url":null,"abstract":"In this paper, the method of ensemble clustering model of hyperspectral image segmentation is proposed. We select several abundant information and identifiable band from each hyperspectral face images cube using Principal Component Analysis, in order to alleviate the computation burden and improve the clustering performance. K-means base clustering is performed on the all selected bands respectively, and different initial clustering center values were given to each band. This solves the K-means over-reliance on the initial clustering center values. Finally, we use the automatic integration method based on factor graph to fuse the results of base clustering and gain the more robust cluster result.","PeriodicalId":376884,"journal":{"name":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT.2017.8388945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the method of ensemble clustering model of hyperspectral image segmentation is proposed. We select several abundant information and identifiable band from each hyperspectral face images cube using Principal Component Analysis, in order to alleviate the computation burden and improve the clustering performance. K-means base clustering is performed on the all selected bands respectively, and different initial clustering center values were given to each band. This solves the K-means over-reliance on the initial clustering center values. Finally, we use the automatic integration method based on factor graph to fuse the results of base clustering and gain the more robust cluster result.
高光谱图像分割的集成聚类模型
提出了基于集成聚类模型的高光谱图像分割方法。利用主成分分析方法从每个高光谱人脸图像立方体中选择信息丰富且可识别的条带,以减轻计算负担,提高聚类性能。对选取的所有波段分别进行K-means基聚类,并给予每个波段不同的初始聚类中心值。这解决了k均值对初始聚类中心值的过度依赖。最后,采用基于因子图的自动集成方法对基础聚类结果进行融合,得到更鲁棒的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信