Soft Fall Detection Using Machine Learning in Wearable Devices

D. Genoud, Vincent Cuendet, Julien Torrent
{"title":"Soft Fall Detection Using Machine Learning in Wearable Devices","authors":"D. Genoud, Vincent Cuendet, Julien Torrent","doi":"10.1109/AINA.2016.124","DOIUrl":null,"url":null,"abstract":"Wearable watches provide very useful linear acceleration information that can be use to detect falls. Howeverfalls not from a standing position are difficult to spot amongother normal activities. This paper describes methods, basedon pattern recognition using machine learning, to improve thedetection of \"soft falls\". The values of the linear accelerometersare combined in a robust vector that will be presented as inputto the algorithms. The performance of these different machinelearning algorithms is discussed and then, based on the bestscoring method, the size of the time window fed to the systemis studied. The best experiments lead to results showing morethan 0.9 AUC on a real dataset. In a second part, a prototypeimplementation on an Android platform using the best resultsobtained during the experiments is described.","PeriodicalId":438655,"journal":{"name":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","volume":"61 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2016.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Wearable watches provide very useful linear acceleration information that can be use to detect falls. Howeverfalls not from a standing position are difficult to spot amongother normal activities. This paper describes methods, basedon pattern recognition using machine learning, to improve thedetection of "soft falls". The values of the linear accelerometersare combined in a robust vector that will be presented as inputto the algorithms. The performance of these different machinelearning algorithms is discussed and then, based on the bestscoring method, the size of the time window fed to the systemis studied. The best experiments lead to results showing morethan 0.9 AUC on a real dataset. In a second part, a prototypeimplementation on an Android platform using the best resultsobtained during the experiments is described.
在可穿戴设备中使用机器学习的软跌倒检测
可穿戴手表提供非常有用的线性加速度信息,可用于检测跌倒。然而,非站立姿势的跌倒很难在其他正常活动中发现。本文描述了基于机器学习的模式识别方法来改进“软跌倒”的检测。线性加速度计的值组合在一个鲁棒向量中,该向量将作为算法的输入。讨论了这些不同机器学习算法的性能,然后,基于最佳评分方法,研究了提供给系统的时间窗口的大小。最好的实验结果在真实数据集上显示超过0.9 AUC。在第二部分中,描述了在Android平台上使用实验中获得的最佳结果的原型实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信