Optimizing Convolutions for an Inference Accelerator: Case Study: Intel’s NNP-I 1000 DL Compute Grid

Durgadoss, Kausik Maiti, Sanju C Sudhakaran, Isha Agarwal, Kartik Podugu, Pavan Kumar, Jitender Patil, A. Chawla
{"title":"Optimizing Convolutions for an Inference Accelerator: Case Study: Intel’s NNP-I 1000 DL Compute Grid","authors":"Durgadoss, Kausik Maiti, Sanju C Sudhakaran, Isha Agarwal, Kartik Podugu, Pavan Kumar, Jitender Patil, A. Chawla","doi":"10.1145/3486001.3486239","DOIUrl":null,"url":null,"abstract":"With Deep Learning (DL) surpassing humans in Image Recognition and Machine Translation related tasks, the demand for specialized hardware has increased in the recent past. DL Accelerators belong to a category of such purpose-built hardware that promise compelling performance for Neural Net computations. But a specialized hardware needs a powerful compiler to unlock its full potential. This paper discusses the Code Generator and Optimizer (CGO) that produces optimized tiling as well as schedule of Convolution operations for the DL Compute Grid in Intel’s NNP-I 1000 platform. This paper also presents some of the key optimization techniques used and the associated performance gains across a rich variety of Deep Learning workloads.","PeriodicalId":266754,"journal":{"name":"Proceedings of the First International Conference on AI-ML Systems","volume":"61 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486001.3486239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With Deep Learning (DL) surpassing humans in Image Recognition and Machine Translation related tasks, the demand for specialized hardware has increased in the recent past. DL Accelerators belong to a category of such purpose-built hardware that promise compelling performance for Neural Net computations. But a specialized hardware needs a powerful compiler to unlock its full potential. This paper discusses the Code Generator and Optimizer (CGO) that produces optimized tiling as well as schedule of Convolution operations for the DL Compute Grid in Intel’s NNP-I 1000 platform. This paper also presents some of the key optimization techniques used and the associated performance gains across a rich variety of Deep Learning workloads.
为推理加速器优化卷积:案例研究:英特尔的NNP-I 1000 DL计算网格
随着深度学习(DL)在图像识别和机器翻译相关任务中超越人类,近年来对专用硬件的需求有所增加。但是一个专门的硬件需要一个强大的编译器来释放它的全部潜力。本文讨论了在Intel的nnp - i1000平台上为DL计算网格生成优化的平铺和卷积操作调度的代码生成器和优化器(CGO)。本文还介绍了在各种深度学习工作负载中使用的一些关键优化技术以及相关的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信