Deep Curriculum Learning for PolSAR Image Classification

Hamid Mousavi, M. Imani, H. Ghassemian
{"title":"Deep Curriculum Learning for PolSAR Image Classification","authors":"Hamid Mousavi, M. Imani, H. Ghassemian","doi":"10.1109/MVIP53647.2022.9738781","DOIUrl":null,"url":null,"abstract":"Following the great success of curriculum learning in the area of machine learning, a novel deep curriculum learning method proposed in this paper, entitled DCL, particularly for the classification of fully polarimetric synthetic aperture radar (PolSAR) data. This method utilizes the entropy-alpha target decomposition method to estimate the degree of complexity of each PolSAR image patch before applying it to the convolutional neural network (CNN). Also, an accumulative mini-batch pacing function is used to introduce more difficult patches to CNN. Experiments on the widely used data set of AIRSAR Flevoland reveal that the proposed curriculum learning method can not only increase classification accuracy but also lead to faster training convergence.","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Following the great success of curriculum learning in the area of machine learning, a novel deep curriculum learning method proposed in this paper, entitled DCL, particularly for the classification of fully polarimetric synthetic aperture radar (PolSAR) data. This method utilizes the entropy-alpha target decomposition method to estimate the degree of complexity of each PolSAR image patch before applying it to the convolutional neural network (CNN). Also, an accumulative mini-batch pacing function is used to introduce more difficult patches to CNN. Experiments on the widely used data set of AIRSAR Flevoland reveal that the proposed curriculum learning method can not only increase classification accuracy but also lead to faster training convergence.
基于深度课程学习的PolSAR图像分类
随着课程学习在机器学习领域的巨大成功,本文提出了一种新的深度课程学习方法,称为DCL,特别是用于全极化合成孔径雷达(PolSAR)数据的分类。该方法利用熵- α目标分解方法估计每个PolSAR图像patch的复杂程度,然后将其应用于卷积神经网络(CNN)。此外,还使用了一个累积的小批量起搏函数来为CNN引入更困难的补丁。在广泛使用的AIRSAR Flevoland数据集上的实验表明,本文提出的课程学习方法不仅可以提高分类精度,而且可以加快训练收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信