{"title":"Deep Curriculum Learning for PolSAR Image Classification","authors":"Hamid Mousavi, M. Imani, H. Ghassemian","doi":"10.1109/MVIP53647.2022.9738781","DOIUrl":null,"url":null,"abstract":"Following the great success of curriculum learning in the area of machine learning, a novel deep curriculum learning method proposed in this paper, entitled DCL, particularly for the classification of fully polarimetric synthetic aperture radar (PolSAR) data. This method utilizes the entropy-alpha target decomposition method to estimate the degree of complexity of each PolSAR image patch before applying it to the convolutional neural network (CNN). Also, an accumulative mini-batch pacing function is used to introduce more difficult patches to CNN. Experiments on the widely used data set of AIRSAR Flevoland reveal that the proposed curriculum learning method can not only increase classification accuracy but also lead to faster training convergence.","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Following the great success of curriculum learning in the area of machine learning, a novel deep curriculum learning method proposed in this paper, entitled DCL, particularly for the classification of fully polarimetric synthetic aperture radar (PolSAR) data. This method utilizes the entropy-alpha target decomposition method to estimate the degree of complexity of each PolSAR image patch before applying it to the convolutional neural network (CNN). Also, an accumulative mini-batch pacing function is used to introduce more difficult patches to CNN. Experiments on the widely used data set of AIRSAR Flevoland reveal that the proposed curriculum learning method can not only increase classification accuracy but also lead to faster training convergence.