Performance measure of color and texture in visual content retrieval in RGB color space

P. Shimi, Vince Paul
{"title":"Performance measure of color and texture in visual content retrieval in RGB color space","authors":"P. Shimi, Vince Paul","doi":"10.1109/SAPIENCE.2016.7684147","DOIUrl":null,"url":null,"abstract":"Feature extraction simplifies the amount of information needed to describe the properties of an image accurately. This paper measures the performance of a CBIR system based on texture feature against combination of both color and texture feature. A Gray Level Co-occurrence Matrix is calculated for computing the texture feature of an image. Using these textual parameters similar images are extracted from a data set. RGB color space is considered for color feature extraction. Global Color Histogram is generated and calculated color features are represented as one dimensional feature vector. Then we combined both color and texture features to retrieve similar images from the dataset. In both situations Euclidean distance is used to measure the similarity of two images. By this experiment it is found that the system which uses the combination of color and texture has better performance in retrieving similar images from the dataset.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Feature extraction simplifies the amount of information needed to describe the properties of an image accurately. This paper measures the performance of a CBIR system based on texture feature against combination of both color and texture feature. A Gray Level Co-occurrence Matrix is calculated for computing the texture feature of an image. Using these textual parameters similar images are extracted from a data set. RGB color space is considered for color feature extraction. Global Color Histogram is generated and calculated color features are represented as one dimensional feature vector. Then we combined both color and texture features to retrieve similar images from the dataset. In both situations Euclidean distance is used to measure the similarity of two images. By this experiment it is found that the system which uses the combination of color and texture has better performance in retrieving similar images from the dataset.
RGB颜色空间中视觉内容检索中颜色和纹理的性能度量
特征提取简化了准确描述图像属性所需的信息量。本文比较了基于纹理特征的CBIR系统与颜色和纹理特征相结合的CBIR系统的性能。为了计算图像的纹理特征,计算灰度共生矩阵。使用这些文本参数从数据集中提取相似的图像。颜色特征提取采用RGB色彩空间。生成全局颜色直方图,并将计算得到的颜色特征表示为一维特征向量。然后我们结合颜色和纹理特征从数据集中检索相似的图像。在这两种情况下,欧几里得距离被用来衡量两个图像的相似性。实验结果表明,采用颜色和纹理相结合的系统在检索相似图像方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信