High-dimensional scientific data exploration via cinema

J. Woodring, J. Ahrens, J. Patchett, C. Tauxe, D. Rogers
{"title":"High-dimensional scientific data exploration via cinema","authors":"J. Woodring, J. Ahrens, J. Patchett, C. Tauxe, D. Rogers","doi":"10.1109/DSIA.2017.8339086","DOIUrl":null,"url":null,"abstract":"Large-scale scientific simulations and experiments generate enormous volumes of data. Data analytics may become a bottleneck to scientific discovery without scalable tools for interactive exploration. Cinema was developed as a way to overcome hurdles by providing an exploratory, image database approach for analyzing large scientific data sets. In the following, we present several new methods for Cinema: 1) a structured data model that lends itself to querying and database support, 2) support for arbitrary data products beyond images, and 3) parameter exploration through high-dimensional visualization. These changes enrich the types of exporatory visualizations and discoveries that are naturally supported by Cinema-style analyses, further enabling data-driven science.","PeriodicalId":308968,"journal":{"name":"2017 IEEE Workshop on Data Systems for Interactive Analysis (DSIA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Data Systems for Interactive Analysis (DSIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSIA.2017.8339086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Large-scale scientific simulations and experiments generate enormous volumes of data. Data analytics may become a bottleneck to scientific discovery without scalable tools for interactive exploration. Cinema was developed as a way to overcome hurdles by providing an exploratory, image database approach for analyzing large scientific data sets. In the following, we present several new methods for Cinema: 1) a structured data model that lends itself to querying and database support, 2) support for arbitrary data products beyond images, and 3) parameter exploration through high-dimensional visualization. These changes enrich the types of exporatory visualizations and discoveries that are naturally supported by Cinema-style analyses, further enabling data-driven science.
通过电影探索高维科学数据
大规模的科学模拟和实验产生了大量的数据。如果没有可扩展的交互式探索工具,数据分析可能成为科学发现的瓶颈。通过提供一种探索性的图像数据库方法来分析大型科学数据集,Cinema被开发为一种克服障碍的方法。下面,我们为Cinema提出了几种新方法:1)一个结构化的数据模型,可以用于查询和数据库支持;2)支持图像以外的任意数据产品;3)通过高维可视化进行参数探索。这些变化丰富了电影式分析自然支持的探索性可视化和发现类型,进一步实现了数据驱动的科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信