{"title":"A novel and efficient method to initialize FPGA embedded memory content in asymptotically constant time","authors":"Matěj Bartík, S. Ubik, P. Kubalík","doi":"10.1109/ReConFig.2016.7857146","DOIUrl":null,"url":null,"abstract":"This paper describes analysis and implementation of a new method for maintaining valid content of FPGA memory blocks with an asymptotically constant time synchronous clear ability, that can be useful for (re)initialization to one default value. A particular application can be for high-speed real-time LZ77 [1] lossless compression algorithms, where a dictionary has to be (re)initialized before each run of the implemented compression algorithm. The method is based on two most widely used techniques for clearing the memory content: a linear passage of the memory and clearing each cell by writing a default value and creating a register field providing an (in)valid bit for each memory cell. Our solution combines these two techniques together with the use of FPGA distributed memory blocks implemented in LUTs (Look-Up Tables) to overcome negative features of each previous method without losing the most of positive features. Our solution provides a balance between the two previous techniques and exceeds them in speed, resources utilization and latency of (re)initialization.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes analysis and implementation of a new method for maintaining valid content of FPGA memory blocks with an asymptotically constant time synchronous clear ability, that can be useful for (re)initialization to one default value. A particular application can be for high-speed real-time LZ77 [1] lossless compression algorithms, where a dictionary has to be (re)initialized before each run of the implemented compression algorithm. The method is based on two most widely used techniques for clearing the memory content: a linear passage of the memory and clearing each cell by writing a default value and creating a register field providing an (in)valid bit for each memory cell. Our solution combines these two techniques together with the use of FPGA distributed memory blocks implemented in LUTs (Look-Up Tables) to overcome negative features of each previous method without losing the most of positive features. Our solution provides a balance between the two previous techniques and exceeds them in speed, resources utilization and latency of (re)initialization.