Dataset

Bernhard Großwindhager, M. Rath, Josef Kulmer, M. Bakr, C. Boano, K. Witrisal, K. Römer
{"title":"Dataset","authors":"Bernhard Großwindhager, M. Rath, Josef Kulmer, M. Bakr, C. Boano, K. Witrisal, K. Römer","doi":"10.21512/commit.v11i2.3870.s145","DOIUrl":null,"url":null,"abstract":". Recollecting details from lifelog data involves a higher level of granularity and reasoning than a conventional lifelog retrieval task. Investigating the task of Question Answering (QA) in lifelog data could help in human memory recollection, as well as improve traditional lifelog retrieval systems. However, there has not yet been a standardised benchmark dataset for the lifelog-based QA. In order to provide a first dataset and baseline benchmark for QA on lifelog data, we present a novel dataset, LLQA , which is an augmented 85-day lifelog collection and includes over 15,000 multiple-choice questions. We also provide different baselines for the evaluation of future works. The results showed that lifelog QA is a challenging task that requires more exploration. The dataset is publicly available at https://github.com/allie-tran/LLQA.","PeriodicalId":118603,"journal":{"name":"Earthquake Statistical Analysis through Multi-state Modeling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Statistical Analysis through Multi-state Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21512/commit.v11i2.3870.s145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Recollecting details from lifelog data involves a higher level of granularity and reasoning than a conventional lifelog retrieval task. Investigating the task of Question Answering (QA) in lifelog data could help in human memory recollection, as well as improve traditional lifelog retrieval systems. However, there has not yet been a standardised benchmark dataset for the lifelog-based QA. In order to provide a first dataset and baseline benchmark for QA on lifelog data, we present a novel dataset, LLQA , which is an augmented 85-day lifelog collection and includes over 15,000 multiple-choice questions. We also provide different baselines for the evaluation of future works. The results showed that lifelog QA is a challenging task that requires more exploration. The dataset is publicly available at https://github.com/allie-tran/LLQA.
数据集
. 与传统的生活日志检索任务相比,从生活日志数据中重新收集细节涉及更高层次的粒度和推理。研究生活日志数据中的问答任务有助于提高人类的记忆回忆能力,也有助于改进传统的生活日志检索系统。然而,目前还没有一个标准化的基于生命日志的QA基准数据集。为了提供第一个数据集和生活日志数据的QA基线基准,我们提出了一个新的数据集LLQA,它是一个85天的生活日志增强集,包括超过15,000个选择题。我们也提供了不同的基线来评估未来的工作。结果表明,生活日志QA是一项具有挑战性的任务,需要更多的探索。该数据集可在https://github.com/allie-tran/LLQA上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信