An interactive video content-based retrieval system

G. Camara-Chavez, F. Precioso, M. Cord, S. Phillip-Foliguet, A. Araújo
{"title":"An interactive video content-based retrieval system","authors":"G. Camara-Chavez, F. Precioso, M. Cord, S. Phillip-Foliguet, A. Araújo","doi":"10.1109/IWSSIP.2008.4604385","DOIUrl":null,"url":null,"abstract":"The actual generation of video search engines offers low-level abstractions of the data while users seek for high-level semantics. The main challenge in video retrieval remains bridging the semantic gap. Thus, the effectiveness of video retrieval is based on the result of the interaction between query selection and a goal-oriented human user. The system exploits the human capability for rapidly scanning imagery augmenting it with an active learning loop, which tries to always present the most relevant material based on the current information. We describe in this paper, a machine learning system for interactive video retrieval. The core of this system is a kernel-based SVM classifier. The video retrieval uses the core as an active learning classifier. We perform an experiment against the 2005 NIST TRECVID benchmark in the high-level task.","PeriodicalId":322045,"journal":{"name":"2008 15th International Conference on Systems, Signals and Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 15th International Conference on Systems, Signals and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2008.4604385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The actual generation of video search engines offers low-level abstractions of the data while users seek for high-level semantics. The main challenge in video retrieval remains bridging the semantic gap. Thus, the effectiveness of video retrieval is based on the result of the interaction between query selection and a goal-oriented human user. The system exploits the human capability for rapidly scanning imagery augmenting it with an active learning loop, which tries to always present the most relevant material based on the current information. We describe in this paper, a machine learning system for interactive video retrieval. The core of this system is a kernel-based SVM classifier. The video retrieval uses the core as an active learning classifier. We perform an experiment against the 2005 NIST TRECVID benchmark in the high-level task.
基于交互式视频内容的检索系统
视频搜索引擎的实际生成提供了数据的低级抽象,而用户则寻求高级语义。视频检索面临的主要挑战是弥合语义差距。因此,视频检索的有效性取决于查询选择与目标导向的人类用户之间的交互结果。该系统利用人类快速扫描图像的能力,并通过主动学习循环来增强它,该循环试图始终根据当前信息呈现最相关的材料。本文描述了一种用于交互式视频检索的机器学习系统。该系统的核心是基于核的SVM分类器。视频检索使用核心作为主动学习分类器。我们在高级任务中针对2005年NIST TRECVID基准执行了一个实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信