Personalized information retrieval models integrating the user's profile

Chahrazed Bouhini, M. Géry, C. Largeron
{"title":"Personalized information retrieval models integrating the user's profile","authors":"Chahrazed Bouhini, M. Géry, C. Largeron","doi":"10.1109/RCIS.2016.7549310","DOIUrl":null,"url":null,"abstract":"Personalized Information Retrieval (PIR) exploits the user's data in order to refine the retrieval, like for instance when users with different backgrounds may express different information needs with the same query. However, this additional source of information is not supported by the classical Information Retrieval (IR) process. In order to overcome this limit, we propose to generate the user profile out from his profile and social data. Then, we introduce several Personalized Information Retrieval models which integrate this profile at the querying step, allowing to personalize the search results. We study several combinations of the initial user's query with his profile. Furthermore, we present a PIR test collection that we built from the social bookmarking network Delicious, in order to evaluate our PIR models. Our experiments showed that the PIR models improve the retrieval results.","PeriodicalId":344289,"journal":{"name":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2016.7549310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Personalized Information Retrieval (PIR) exploits the user's data in order to refine the retrieval, like for instance when users with different backgrounds may express different information needs with the same query. However, this additional source of information is not supported by the classical Information Retrieval (IR) process. In order to overcome this limit, we propose to generate the user profile out from his profile and social data. Then, we introduce several Personalized Information Retrieval models which integrate this profile at the querying step, allowing to personalize the search results. We study several combinations of the initial user's query with his profile. Furthermore, we present a PIR test collection that we built from the social bookmarking network Delicious, in order to evaluate our PIR models. Our experiments showed that the PIR models improve the retrieval results.
集成用户配置文件的个性化信息检索模型
个性化信息检索(PIR)利用用户的数据来优化检索,例如当不同背景的用户可能对同一查询表达不同的信息需求时。然而,经典的信息检索(information Retrieval, IR)过程不支持这种额外的信息源。为了克服这一限制,我们建议从他的个人资料和社交数据中生成用户的个人资料。然后,我们引入了几个个性化信息检索模型,这些模型在查询步骤中集成了该配置文件,允许对搜索结果进行个性化。我们研究了初始用户查询与其个人资料的几种组合。此外,为了评估我们的PIR模型,我们展示了从社交书签网络Delicious构建的PIR测试集。我们的实验表明,PIR模型提高了检索结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信