Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland, Cole S. Peterson, V. Arnaoudova, Bonita Sharif, Jonathan I. Maletic
{"title":"gazel: Supporting Source Code Edits in Eye-Tracking Studies","authors":"Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland, Cole S. Peterson, V. Arnaoudova, Bonita Sharif, Jonathan I. Maletic","doi":"10.1109/ICSE-Companion52605.2021.00038","DOIUrl":null,"url":null,"abstract":"Eye tracking tools are used in software engineering research to study various software development activities. However, a major limitation of these tools is their inability to track gaze data for activities that involve source code editing. We present a novel solution to support eye tracking experiments for tasks involving source code edits as an extension of the iTrace [9] community infrastructure. We introduce the iTrace-Atom plugin and gazel [g@\"zel]—a Python data processing pipeline that maps gaze information to changing source code elements and provides researchers with a way to query this dynamic data. iTrace-Atom is evaluated via a series of simulations and is over 99% accurate at high eye-tracking speeds of over 1,000Hz. iTrace and gazel completely revolutionize the way eye tracking studies are conducted in realistic settings with the presence of scrolling, context switching, and now editing. This opens the doors to support many day-to-day software engineering tasks such as bug fixing, adding new features, and refactoring.","PeriodicalId":136929,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion52605.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Eye tracking tools are used in software engineering research to study various software development activities. However, a major limitation of these tools is their inability to track gaze data for activities that involve source code editing. We present a novel solution to support eye tracking experiments for tasks involving source code edits as an extension of the iTrace [9] community infrastructure. We introduce the iTrace-Atom plugin and gazel [g@"zel]—a Python data processing pipeline that maps gaze information to changing source code elements and provides researchers with a way to query this dynamic data. iTrace-Atom is evaluated via a series of simulations and is over 99% accurate at high eye-tracking speeds of over 1,000Hz. iTrace and gazel completely revolutionize the way eye tracking studies are conducted in realistic settings with the presence of scrolling, context switching, and now editing. This opens the doors to support many day-to-day software engineering tasks such as bug fixing, adding new features, and refactoring.