O. Ibarra-Manzano, J. Andrade-Lucio, Y. Shmaliy, Yuan Xu
{"title":"One-Step Predictive H2 FIR Tracking under Persistent Disturbances and Data Errors","authors":"O. Ibarra-Manzano, J. Andrade-Lucio, Y. Shmaliy, Yuan Xu","doi":"10.37394/232014.2021.17.12","DOIUrl":null,"url":null,"abstract":"Information loss often occurs in industrial processes under unspecified impacts and data errors. Therefore robust predictors are required to assure the performance. We design a one-step H2 optimal finite impulse response (H2-OFIR) predictor under persistent disturbances, measurement errors, and initial errors by minimizing the squared weighted Frobenius norms for each error. The H2-OFIR predictive tracker is tested by simulations assuming Gauss-Markov disturbances and data errors. It is shown that the H2-OFIR predictor has a better robustness than the Kalman and unbiased FIR predictor. An experimental verification is provided based on the moving robot tracking problem","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2021.17.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Information loss often occurs in industrial processes under unspecified impacts and data errors. Therefore robust predictors are required to assure the performance. We design a one-step H2 optimal finite impulse response (H2-OFIR) predictor under persistent disturbances, measurement errors, and initial errors by minimizing the squared weighted Frobenius norms for each error. The H2-OFIR predictive tracker is tested by simulations assuming Gauss-Markov disturbances and data errors. It is shown that the H2-OFIR predictor has a better robustness than the Kalman and unbiased FIR predictor. An experimental verification is provided based on the moving robot tracking problem