One-Step Predictive H2 FIR Tracking under Persistent Disturbances and Data Errors

O. Ibarra-Manzano, J. Andrade-Lucio, Y. Shmaliy, Yuan Xu
{"title":"One-Step Predictive H2 FIR Tracking under Persistent Disturbances and Data Errors","authors":"O. Ibarra-Manzano, J. Andrade-Lucio, Y. Shmaliy, Yuan Xu","doi":"10.37394/232014.2021.17.12","DOIUrl":null,"url":null,"abstract":"Information loss often occurs in industrial processes under unspecified impacts and data errors. Therefore robust predictors are required to assure the performance. We design a one-step H2 optimal finite impulse response (H2-OFIR) predictor under persistent disturbances, measurement errors, and initial errors by minimizing the squared weighted Frobenius norms for each error. The H2-OFIR predictive tracker is tested by simulations assuming Gauss-Markov disturbances and data errors. It is shown that the H2-OFIR predictor has a better robustness than the Kalman and unbiased FIR predictor. An experimental verification is provided based on the moving robot tracking problem","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2021.17.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information loss often occurs in industrial processes under unspecified impacts and data errors. Therefore robust predictors are required to assure the performance. We design a one-step H2 optimal finite impulse response (H2-OFIR) predictor under persistent disturbances, measurement errors, and initial errors by minimizing the squared weighted Frobenius norms for each error. The H2-OFIR predictive tracker is tested by simulations assuming Gauss-Markov disturbances and data errors. It is shown that the H2-OFIR predictor has a better robustness than the Kalman and unbiased FIR predictor. An experimental verification is provided based on the moving robot tracking problem
持续干扰和数据误差下的一步预测H2 FIR跟踪
在工业生产过程中,由于不明确的影响和数据错误,经常发生信息丢失。因此,需要稳健的预测器来保证性能。我们通过最小化每个误差的加权Frobenius规范的平方,设计了一个在持续干扰、测量误差和初始误差下的一步H2最优有限脉冲响应(H2- ofir)预测器。在假设高斯-马尔可夫干扰和数据误差的情况下,对H2-OFIR预测跟踪器进行了仿真测试。结果表明,H2-OFIR预测器比Kalman和无偏FIR预测器具有更好的鲁棒性。针对运动机器人的跟踪问题,给出了实验验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信