Exact Analytical Solutions of Linear Dissipative Wave Equations via Laplace Transform Method

M. Jamil, R. Khan, K. Shah
{"title":"Exact Analytical Solutions of Linear Dissipative Wave Equations via Laplace\nTransform Method","authors":"M. Jamil, R. Khan, K. Shah","doi":"10.52280/pujm.2021.530605","DOIUrl":null,"url":null,"abstract":"A wave phenomena evolved day after day, as various concepts\nregarding waves appeared with the passage of time. These phenomena\nare generally modelled mathematically by partial differential equations\n(PDEs). In this research, we investigate the exact analytical solutions\nof one and two dimensional linear dissipative wave equations which are\nmodelled by second order PDEs with use of some initial and boundary\nconditions. We use double Laplace transform (DLT) and triple Laplace\ntransform (TLT) methods to determine these exact analytical solutions.\nWe provide examples with figures to test effectiveness of this scheme of\nLaplace transform","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.530605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A wave phenomena evolved day after day, as various concepts regarding waves appeared with the passage of time. These phenomena are generally modelled mathematically by partial differential equations (PDEs). In this research, we investigate the exact analytical solutions of one and two dimensional linear dissipative wave equations which are modelled by second order PDEs with use of some initial and boundary conditions. We use double Laplace transform (DLT) and triple Laplace transform (TLT) methods to determine these exact analytical solutions. We provide examples with figures to test effectiveness of this scheme of Laplace transform
线性耗散波动方程的拉普拉斯变换精确解析解
随着时间的推移,出现了各种关于波的概念,波现象日复一日地发展。这些现象通常用偏微分方程(PDEs)进行数学建模。本文研究了用二阶偏微分方程模拟的一维和二维线性耗散波方程,在某些初始条件和边界条件下的精确解析解。我们使用双重拉普拉斯变换(DLT)和三重拉普拉斯变换(TLT)方法来确定这些精确的解析解。通过实例和图形验证了该方案的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信