Algorithm for equilibrium in the symmetric two-player Hirshleifer contests

Boróka Olteán-Péter, Csaba Farkas
{"title":"Algorithm for equilibrium in the symmetric two-player Hirshleifer contests","authors":"Boróka Olteán-Péter, Csaba Farkas","doi":"10.1109/SACI58269.2023.10158666","DOIUrl":null,"url":null,"abstract":"In this work we study equilibrium points in the symmetric two-player Hirshleifer contests, which are going to be called Hirshleifer equilibrium point. We extend the Quasi-Newton method to the setting of this type of equilibrium point. The numerical algorithm is developed for multiobjective optimization problems based on the properties of Hirshleifer equilibrium point. Some preliminary numerical results are reported showing the performance of our algorithms.We present a possible way for converting single objective optimization to multiobjective optimization which is discussed in detail in our study.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study equilibrium points in the symmetric two-player Hirshleifer contests, which are going to be called Hirshleifer equilibrium point. We extend the Quasi-Newton method to the setting of this type of equilibrium point. The numerical algorithm is developed for multiobjective optimization problems based on the properties of Hirshleifer equilibrium point. Some preliminary numerical results are reported showing the performance of our algorithms.We present a possible way for converting single objective optimization to multiobjective optimization which is discussed in detail in our study.
对称二人Hirshleifer博弈中的均衡算法
本文研究了对称二人Hirshleifer博弈中的均衡点,称之为Hirshleifer均衡点。我们将拟牛顿方法推广到这类平衡点的设置。基于Hirshleifer平衡点的性质,提出了求解多目标优化问题的数值算法。一些初步的数值结果显示了我们的算法的性能。提出了一种将单目标优化转化为多目标优化的可行方法,并对其进行了详细讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信