Efficient Approximate Medoids of Temporal Sequences

W. Bailer
{"title":"Efficient Approximate Medoids of Temporal Sequences","authors":"W. Bailer","doi":"10.1145/3095713.3095717","DOIUrl":null,"url":null,"abstract":"In order to compactly represent a set of data, its medoid (the element with minimum summed distance to all other elements) is a useful choice. This has applications in clustering, compression and visualisation of data. In multimedia data, the set of data is often sampled as a sequence in time or space, such as a video shot or views of a scene. The exact calculation of the medoid may be costly, especially if the distance function between elements is not trivial. While approximation methods for medoid selection exist, we show in this work that they do not perform well on sequences of images. We thus propose a novel algorithm for efficiently selecting an approximate medoid of a temporal sequence and assess its performance on two large-scale video data sets.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to compactly represent a set of data, its medoid (the element with minimum summed distance to all other elements) is a useful choice. This has applications in clustering, compression and visualisation of data. In multimedia data, the set of data is often sampled as a sequence in time or space, such as a video shot or views of a scene. The exact calculation of the medoid may be costly, especially if the distance function between elements is not trivial. While approximation methods for medoid selection exist, we show in this work that they do not perform well on sequences of images. We thus propose a novel algorithm for efficiently selecting an approximate medoid of a temporal sequence and assess its performance on two large-scale video data sets.
时间序列的有效近似介质
为了紧凑地表示一组数据,它的介质(与所有其他元素的总距离最小的元素)是一个有用的选择。这在聚类、压缩和数据可视化中都有应用。在多媒体数据中,数据集通常作为时间或空间上的序列进行采样,例如视频镜头或场景视图。介质的精确计算可能是昂贵的,特别是如果元素之间的距离函数不是微不足道的。虽然存在介质选择的近似方法,但我们在这项工作中表明,它们在图像序列上表现不佳。因此,我们提出了一种新的算法来有效地选择时间序列的近似介质,并评估其在两个大规模视频数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信