Empirical study of defuzzification

S. Lancaster, M. J. Wierman
{"title":"Empirical study of defuzzification","authors":"S. Lancaster, M. J. Wierman","doi":"10.1109/NAFIPS.2003.1226767","DOIUrl":null,"url":null,"abstract":"The most important application of fuzzy logic is designing controllers. Fuzzy logic controllers (FLC) are much easier to design than non-linear controllers of similar capabilities. The rules that a designer needs to create are often based on their current experience and knowledge. Conventional FLCs use Center of Gravity or Mean of Maxima defuzzification methods, though other methods have been studied. This paper compares the efficiency of many different models of the defuzzification process. The goal is to examine the accuracy of the output data and the amount of processing time required. A simple controller that backs a truck up to a gate is used in the study. All of the variables are granulated with trapezoidal fuzzy numbers. Some of the defuzzification methods examined are Fast Center of Gravity, Mean of Maxima, True Center of Gravity and various new methods that have shown promise in application.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The most important application of fuzzy logic is designing controllers. Fuzzy logic controllers (FLC) are much easier to design than non-linear controllers of similar capabilities. The rules that a designer needs to create are often based on their current experience and knowledge. Conventional FLCs use Center of Gravity or Mean of Maxima defuzzification methods, though other methods have been studied. This paper compares the efficiency of many different models of the defuzzification process. The goal is to examine the accuracy of the output data and the amount of processing time required. A simple controller that backs a truck up to a gate is used in the study. All of the variables are granulated with trapezoidal fuzzy numbers. Some of the defuzzification methods examined are Fast Center of Gravity, Mean of Maxima, True Center of Gravity and various new methods that have shown promise in application.
去模糊化的实证研究
模糊逻辑最重要的应用是设计控制器。模糊逻辑控制器(FLC)比具有类似功能的非线性控制器更容易设计。设计师需要创造的规则通常是基于他们当前的经验和知识。传统的FLCs使用重心或极大值均值去模糊化方法,但也研究了其他方法。本文比较了许多不同模型的去模糊化过程的效率。目的是检查输出数据的准确性和所需的处理时间。在这项研究中使用了一个简单的控制器,可以将卡车倒车到一个门上。所有变量都用梯形模糊数进行粒化。研究了快速重心法、极值均值法、真重心法以及各种具有应用前景的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信