Gaps in bounded query hierarchies

R. Beigel
{"title":"Gaps in bounded query hierarchies","authors":"R. Beigel","doi":"10.1109/CCC.1999.766271","DOIUrl":null,"url":null,"abstract":"Prior results show that most bounded query hierarchies cannot contain finite gaps. For example, it is known that P/sub (m+1)-tt//sup SAT/=P/sub m-tt//sup SAT//spl rArr/P/sub btt//sup SAT/=P/sub m-tt//sup SAT/ and for all sets A/spl middot/FP/sub (m=1)-tt//sup A/=FP/sub m-tt//sup A//spl rArr/FP/sub btt//sup A/=FP/sub m-tt//sup A//spl middot/P/sub (m+1)-T//sup A/=P/sub m-T//sup A/=P/sub bT//sup A//spl middot/FP/sub (m+1)-T//sup A/=FP/sub m-T//sup A//spl rArr/FP/sub bT//sup A/=FP/sub m-T//sup A/ where P/sub m-tt//sup A/ is the set of languages computable by polynomial-time Turing machines that make m nonadaptive queries to A; P/sub btt//sup A/=/spl cup//sub m/P/sub m-tt//sup A/, P/sub m-t//sup A/ and P/sub bT//sup A/ are the analogous adaptive queries classes; and FP/sub m-tt//sup A/, FP/sub btt//sup A/, FP/sub m-T//sup A/, and FP/sub bT//sup A/ in turn are the analogous function classes. It was widely expected that these general results would extend to the remaining case-languages computed with nonadaptive queries-yet results remained elusive. The best known was that P/sub 2m-tt//sup A/=P/sub m-tt//sup A//spl rArr/P/sub btt//sup A/=P/sub m-tt//sup A/. We disprove the conjecture, in fact, P/sub [4/3m]-tt//sup A/=P/sub m-tt//sup A/not/spl rArr/P/sub ([4/3m]+1)-tt/=P/sub [4/3m]-tt//sup A/. Thus there is a P/sub m-tt//sup A/ hierarchy that contains a finite gap. We also make progress on the 3-tt vs. 2-tt case: P/sub 3-tt//sup A/=P/sub 2-tt//sup A//spl rArr/P/sub btt//sup A//spl sube/P/sub 2-tt//sup A//poly.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Prior results show that most bounded query hierarchies cannot contain finite gaps. For example, it is known that P/sub (m+1)-tt//sup SAT/=P/sub m-tt//sup SAT//spl rArr/P/sub btt//sup SAT/=P/sub m-tt//sup SAT/ and for all sets A/spl middot/FP/sub (m=1)-tt//sup A/=FP/sub m-tt//sup A//spl rArr/FP/sub btt//sup A/=FP/sub m-tt//sup A//spl middot/P/sub (m+1)-T//sup A/=P/sub m-T//sup A/=P/sub bT//sup A//spl middot/FP/sub (m+1)-T//sup A/=FP/sub m-T//sup A//spl rArr/FP/sub bT//sup A/=FP/sub m-T//sup A/ where P/sub m-tt//sup A/ is the set of languages computable by polynomial-time Turing machines that make m nonadaptive queries to A; P/sub btt//sup A/=/spl cup//sub m/P/sub m-tt//sup A/, P/sub m-t//sup A/ and P/sub bT//sup A/ are the analogous adaptive queries classes; and FP/sub m-tt//sup A/, FP/sub btt//sup A/, FP/sub m-T//sup A/, and FP/sub bT//sup A/ in turn are the analogous function classes. It was widely expected that these general results would extend to the remaining case-languages computed with nonadaptive queries-yet results remained elusive. The best known was that P/sub 2m-tt//sup A/=P/sub m-tt//sup A//spl rArr/P/sub btt//sup A/=P/sub m-tt//sup A/. We disprove the conjecture, in fact, P/sub [4/3m]-tt//sup A/=P/sub m-tt//sup A/not/spl rArr/P/sub ([4/3m]+1)-tt/=P/sub [4/3m]-tt//sup A/. Thus there is a P/sub m-tt//sup A/ hierarchy that contains a finite gap. We also make progress on the 3-tt vs. 2-tt case: P/sub 3-tt//sup A/=P/sub 2-tt//sup A//spl rArr/P/sub btt//sup A//spl sube/P/sub 2-tt//sup A//poly.
有界查询层次结构中的间隙
先前的结果表明,大多数有界查询层次结构不能包含有限间隙。例如,已知P/sub (m+1)-tt//sup SAT/=P/sub m-tt//sup SAT/ P/sub btt//sup SAT/=P/sub m-tt//sup SAT/ P/sub btt//sup SAT/=P/ spl middot/FP/ FP/sub (m+1)-T//sup A/=P/sub m-tt//sup A/=FP/sub m-tt//sup A/=P/sub m-T//sup A/=P/sub m-T//sup A//spl rArr/FP/sub btt//sup A/=FP/sub m-T//sup A//spl rArr/FP/sub bT//sup A/=FP/sub m-T//sup A/是可由多项式时间图灵机计算的语言集对A进行m次非自适应查询;P/sub btt//sup A/=/spl cup//sub m/P/sub m-tt//sup A/, P/sub m-t//sup A/和P/sub bT//sup A/是类似的自适应查询类;而FP/sub m-tt//sup A/、FP/sub btt//sup A/、FP/sub m-T//sup A/和FP/sub bT//sup A/都是类似的函数类。人们普遍认为,这些通用结果将扩展到使用非自适应查询计算的其他大小写语言,但结果仍然难以捉摸。最著名的是P/sub 2m-tt//sup A/=P/sub m-tt//sup A//spl rArr/P/sub btt//sup A/=P/sub m-tt//sup A/。我们证明了P/sub [4/3m]-tt//sup A/=P/sub m-tt//sup A/not/spl rArr/P/sub ([4/3m]+1)-tt/=P/sub [4/3m]-tt//sup A/。因此存在一个包含有限间隙的P/sub - m-tt//sup - a /层次结构。我们也在3-tt与2-tt的情况下取得了进展:P/sub -tt//sup A/=P/sub -tt//sup A//spl rArr/P/sub -tt//sup A//spl sub /P/sub -tt//sup A//poly。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信