Causative matrix technique for deriving interim period transition probabilities in nonstationary markov process

S. Kim
{"title":"Causative matrix technique for deriving interim period transition probabilities in nonstationary markov process","authors":"S. Kim","doi":"10.1002/NAV.3800320411","DOIUrl":null,"url":null,"abstract":"The Markov assumption that transition probabilities are assumed to be constant over entire periods has been applied in economic and social structures, for example, in the analysis of income and wage distributions. In many cases, however, nonstationary transition probabilities exist over different periods. Based on causative matrix technique, this study shows a binomial approximation for obtaining nonstationary interim transition probabilities under undisturbance when the first and the last transition matrices are known.","PeriodicalId":431817,"journal":{"name":"Naval Research Logistics Quarterly","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naval Research Logistics Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NAV.3800320411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Markov assumption that transition probabilities are assumed to be constant over entire periods has been applied in economic and social structures, for example, in the analysis of income and wage distributions. In many cases, however, nonstationary transition probabilities exist over different periods. Based on causative matrix technique, this study shows a binomial approximation for obtaining nonstationary interim transition probabilities under undisturbance when the first and the last transition matrices are known.
非平稳马尔可夫过程中过渡期转移概率的因果矩阵法
马尔可夫假设假定过渡概率在整个时期内是恒定的,这一假设已被应用于经济和社会结构,例如,在收入和工资分配的分析中。然而,在许多情况下,不同时期存在非平稳过渡概率。本文基于因果矩阵技术,给出了当第一和最后一个过渡矩阵已知时,求非平稳过渡概率的二项逼近方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信