AnoGAN-Based Anomaly Filtering for Intelligent Edge Device in Smart Factory

Donghyun Kim, Jae-Min Cha, Seokju Oh, Jongpil Jeong
{"title":"AnoGAN-Based Anomaly Filtering for Intelligent Edge Device in Smart Factory","authors":"Donghyun Kim, Jae-Min Cha, Seokju Oh, Jongpil Jeong","doi":"10.1109/IMCOM51814.2021.9377409","DOIUrl":null,"url":null,"abstract":"Maintenance of production equipment and controlling products quality through data analysis are the main issues of smart factory. During production, detected data for analysis is showing abnormal data more than normal data. Therefore, there is lots of energy consumption for analysis, cost, and saving of data. Edge Device which applied deep learning algorithm is able to solve this problem. In this paper, a framework for data filtering method before data analysis is proposed through Anomaly detection using single board computer (SBC). Using Nvidia Jetson nano and desktop computer to compare and analyze the two virtual environments to determine the framework of optimum anomaly data filtering. AnoGAN is a deep learning model utilized for anomaly detection.","PeriodicalId":275121,"journal":{"name":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM51814.2021.9377409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Maintenance of production equipment and controlling products quality through data analysis are the main issues of smart factory. During production, detected data for analysis is showing abnormal data more than normal data. Therefore, there is lots of energy consumption for analysis, cost, and saving of data. Edge Device which applied deep learning algorithm is able to solve this problem. In this paper, a framework for data filtering method before data analysis is proposed through Anomaly detection using single board computer (SBC). Using Nvidia Jetson nano and desktop computer to compare and analyze the two virtual environments to determine the framework of optimum anomaly data filtering. AnoGAN is a deep learning model utilized for anomaly detection.
基于anogan的智能工厂边缘设备异常滤波
生产设备的维护和通过数据分析控制产品质量是智能工厂的主要问题。在生产过程中,用于分析的检测数据显示异常数据多于正常数据。因此,在分析、成本和数据保存方面存在大量的能耗。应用深度学习算法的边缘设备能够解决这一问题。本文提出了一种利用单板计算机(SBC)进行异常检测,在数据分析前进行数据过滤的框架。利用Nvidia Jetson nano和台式计算机对两种虚拟环境进行对比分析,确定最佳异常数据过滤框架。AnoGAN是一种用于异常检测的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信