Segmentation of intracerebral hemorrhage based on improved U-Net

Guogang Cao, Yijie Wang, Xinyu Zhu, Mengxue Li, Xiaoyan Wang, Ying Chen
{"title":"Segmentation of intracerebral hemorrhage based on improved U-Net","authors":"Guogang Cao, Yijie Wang, Xinyu Zhu, Mengxue Li, Xiaoyan Wang, Ying Chen","doi":"10.1109/TOCS50858.2020.9339707","DOIUrl":null,"url":null,"abstract":"Automatic medical image segmentation helps to diagnose and treat stroke timely. In this paper, it is proposing an improved U-Net neural network for the auxiliary diagnosis of intracerebral hemorrhage, which realizes the automatic segmentation of the hemorrhage on CT images. First, clustering the pixels of brain CT images into four categories: white matter, gray matter, cerebrospinal fluid, and hemorrhage by fuzzy C-means clustering method, then removing the skull by morphological image method, and finally proposing an improved U-Net neural network model to segment hemorrhage automatically. Experiments show that the dice similarity coefficient reaches 0.860 ± 0.031, which is better than the other methods. It dramatically improves the accuracy of segmentation for intracerebral hemorrhage.","PeriodicalId":373862,"journal":{"name":"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TOCS50858.2020.9339707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Automatic medical image segmentation helps to diagnose and treat stroke timely. In this paper, it is proposing an improved U-Net neural network for the auxiliary diagnosis of intracerebral hemorrhage, which realizes the automatic segmentation of the hemorrhage on CT images. First, clustering the pixels of brain CT images into four categories: white matter, gray matter, cerebrospinal fluid, and hemorrhage by fuzzy C-means clustering method, then removing the skull by morphological image method, and finally proposing an improved U-Net neural network model to segment hemorrhage automatically. Experiments show that the dice similarity coefficient reaches 0.860 ± 0.031, which is better than the other methods. It dramatically improves the accuracy of segmentation for intracerebral hemorrhage.
基于改进U-Net的脑出血分割
医学图像自动分割有助于及时诊断和治疗脑卒中。本文提出一种改进的U-Net神经网络用于脑出血的辅助诊断,实现了脑出血在CT图像上的自动分割。首先,采用模糊c均值聚类方法将脑CT图像的像素点聚类为白质、灰质、脑脊液和出血4类,然后采用形态学图像法去除颅骨,最后提出一种改进的U-Net神经网络模型对出血进行自动分割。实验表明,该方法的骰子相似系数达到0.860±0.031,优于其他方法。该方法显著提高了脑出血图像分割的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信