Stacked Filter Bank based descriptor for Human Action Recognition from Depth Sequences

P. Rathnakara Shetty, B. H. Shekar, L. Mestetsky, M. Manju Prasad
{"title":"Stacked Filter Bank based descriptor for Human Action Recognition from Depth Sequences","authors":"P. Rathnakara Shetty, B. H. Shekar, L. Mestetsky, M. Manju Prasad","doi":"10.1109/CICT48419.2019.9066216","DOIUrl":null,"url":null,"abstract":"Registering the motion cues from a video to produce a compact representation is a crucial stage in video based Human Action Recognition (HAR). Exploiting the most prominent features using an efficient descriptor from such a representation also plays equally significant role in the performance of recognition models. In this work, we present a concise Depth Motion Map with striding which registers the motion cues from depth sequences on a video and a novel Filter Bank based descriptor, wherein a Taylor Series Expansion (TSE) filter, a Riesz filter and a gradient filter are stacked together to extract the prominent features. We empirically evaluate the feasibility of our method on MSR Action 3D dataset under standard protocols, achieving state-of-the-art results.","PeriodicalId":234540,"journal":{"name":"2019 IEEE Conference on Information and Communication Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT48419.2019.9066216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Registering the motion cues from a video to produce a compact representation is a crucial stage in video based Human Action Recognition (HAR). Exploiting the most prominent features using an efficient descriptor from such a representation also plays equally significant role in the performance of recognition models. In this work, we present a concise Depth Motion Map with striding which registers the motion cues from depth sequences on a video and a novel Filter Bank based descriptor, wherein a Taylor Series Expansion (TSE) filter, a Riesz filter and a gradient filter are stacked together to extract the prominent features. We empirically evaluate the feasibility of our method on MSR Action 3D dataset under standard protocols, achieving state-of-the-art results.
基于堆叠滤波器组描述符的深度序列人体动作识别
在基于视频的人类动作识别(HAR)中,对视频中的动作线索进行注册以产生紧凑的表示是一个关键步骤。利用这种表示的有效描述符来挖掘最突出的特征,在识别模型的性能中也起着同样重要的作用。在这项工作中,我们提出了一个简洁的深度运动地图,它记录了视频上深度序列的运动线索,并提出了一个基于描述符的新颖滤波器组,其中泰勒级数展开(TSE)滤波器、Riesz滤波器和梯度滤波器叠加在一起以提取突出特征。我们在标准协议下对我们的方法在MSR Action 3D数据集上的可行性进行了实证评估,获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信