Pengfei Xuan, Jeffrey Denton, Feng Luo, P. Srimani
{"title":"Big data analytics on traditional HPC infrastructure using two-level storage","authors":"Pengfei Xuan, Jeffrey Denton, Feng Luo, P. Srimani","doi":"10.1145/2831244.2831253","DOIUrl":null,"url":null,"abstract":"Data-intensive computing has become one of the major workloads on traditional high-performance computing (HPC) clusters. Currently, deploying data-intensive computing software framework on HPC clusters still faces performance and scalability issues. In this paper, we develop a new two-level storage system by integrating Tachyon, an in-memory file system with OrangeFS, a parallel file system. We model the I/O throughputs of four storage structures: HDFS, OrangeFS, Tachyon and two-level storage. We conduct computational experiments to characterize I/O throughput behavior of two-level storage and compare its performance to that of HDFS and OrangeFS, using TeraSort benchmark. Theoretical models and experimental tests both show that the two-level storage system can increase the aggregate I/O throughputs. This work lays a solid foundation for future work in designing and building HPC systems that can provide a better support on I/O intensive workloads with preserving existing computing resources.","PeriodicalId":166804,"journal":{"name":"International Symposium on Design and Implementation of Symbolic Computation Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Design and Implementation of Symbolic Computation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2831244.2831253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Data-intensive computing has become one of the major workloads on traditional high-performance computing (HPC) clusters. Currently, deploying data-intensive computing software framework on HPC clusters still faces performance and scalability issues. In this paper, we develop a new two-level storage system by integrating Tachyon, an in-memory file system with OrangeFS, a parallel file system. We model the I/O throughputs of four storage structures: HDFS, OrangeFS, Tachyon and two-level storage. We conduct computational experiments to characterize I/O throughput behavior of two-level storage and compare its performance to that of HDFS and OrangeFS, using TeraSort benchmark. Theoretical models and experimental tests both show that the two-level storage system can increase the aggregate I/O throughputs. This work lays a solid foundation for future work in designing and building HPC systems that can provide a better support on I/O intensive workloads with preserving existing computing resources.