Structure analysis for fMRI brain data by using mutual information and interaction

K. Niki, J. Hatou, I. Tahara
{"title":"Structure analysis for fMRI brain data by using mutual information and interaction","authors":"K. Niki, J. Hatou, I. Tahara","doi":"10.1109/ICONIP.1999.844661","DOIUrl":null,"url":null,"abstract":"The authors propose a novel structure analysis method for fMRI data by using mutual information and interaction, based on Shannon's information theory. First, we introduce a structure analysis that assumes one directional information flow schema: stimulus variate/spl rarr/state variate/spl rarr/response variate. Next, we present alternative structure analysis methods that focus on the common information in variates. These methods are useful in the case where the direction of information flow is not obvious, just like in higher brain areas. We apply these analysis methods to artificially generated data, and show some kinds of classification error. However, intensive analysis that uses many kinds of information measurements can make information structure clear. Finally we apply these methods to fMRI data and show our methods are useful.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The authors propose a novel structure analysis method for fMRI data by using mutual information and interaction, based on Shannon's information theory. First, we introduce a structure analysis that assumes one directional information flow schema: stimulus variate/spl rarr/state variate/spl rarr/response variate. Next, we present alternative structure analysis methods that focus on the common information in variates. These methods are useful in the case where the direction of information flow is not obvious, just like in higher brain areas. We apply these analysis methods to artificially generated data, and show some kinds of classification error. However, intensive analysis that uses many kinds of information measurements can make information structure clear. Finally we apply these methods to fMRI data and show our methods are useful.
基于互信息和交互作用的fMRI脑数据结构分析
基于香农信息理论,提出了一种基于互信息和交互作用的功能磁共振成像数据结构分析方法。首先,我们引入了一个结构分析,假设一个定向信息流模式:刺激变量/spl rarr/状态变量/spl rarr/反应变量。接下来,我们提出了另一种结构分析方法,重点关注变量中的公共信息。这些方法在信息流方向不明显的情况下很有用,就像在大脑高级区域一样。我们将这些分析方法应用于人工生成的数据,并显示了一些类型的分类误差。然而,使用多种信息度量的深入分析可以使信息结构清晰。最后,我们将这些方法应用于fMRI数据,证明了我们的方法是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信