Zeta functions of finite-type-Dyck shifts are N-algebraic

Marie-Pierre Béal, Michel Blockelet, C. Dima
{"title":"Zeta functions of finite-type-Dyck shifts are N-algebraic","authors":"Marie-Pierre Béal, Michel Blockelet, C. Dima","doi":"10.1109/ITA.2014.6804286","DOIUrl":null,"url":null,"abstract":"Constrained coding is a technique for converting unrestricted sequences of symbols into constrained sequences, i.e. sequences with a predefined set of properties. Regular constraints are described by finite-state automata and the set of bi-infinite constrained sequences are finite-type or sofic shifts. A larger class of constraints, described by sofic-Dyck automata, are the visibly pushdown constraints whose corresponding set of biinfinite sequences are the sofic-Dyck shifts. An algebraic formula for the zeta function, which counts the periodic sequences of these shifts, can be obtained for sofic-Dyck shifts having a right-resolving presentation. We extend the formula to all sofic-Dyck shifts. This proves that the zeta function of all sofic-Dyck shifts is a computable Z-algebraic series. We prove that the zeta function of a finite-type-Dyck shift is a computable N-algebraic series, i.e. is the generating series of some unambiguous context-free language. We conjecture that the result holds for all sofic-Dyck shifts.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Constrained coding is a technique for converting unrestricted sequences of symbols into constrained sequences, i.e. sequences with a predefined set of properties. Regular constraints are described by finite-state automata and the set of bi-infinite constrained sequences are finite-type or sofic shifts. A larger class of constraints, described by sofic-Dyck automata, are the visibly pushdown constraints whose corresponding set of biinfinite sequences are the sofic-Dyck shifts. An algebraic formula for the zeta function, which counts the periodic sequences of these shifts, can be obtained for sofic-Dyck shifts having a right-resolving presentation. We extend the formula to all sofic-Dyck shifts. This proves that the zeta function of all sofic-Dyck shifts is a computable Z-algebraic series. We prove that the zeta function of a finite-type-Dyck shift is a computable N-algebraic series, i.e. is the generating series of some unambiguous context-free language. We conjecture that the result holds for all sofic-Dyck shifts.
有限型dyck位移的Zeta函数是n代数的
约束编码是一种将不受限制的符号序列转换为约束序列的技术,即具有预定义属性集的序列。正则约束由有限状态自动机描述,双无限约束序列集是有限型或局部位移。由sofi - dyck自动机描述的一类更大的约束是可见的下推约束,其对应的双无穷序列集是sofi - dyck移位。对于具有右分辨表示的sofi - dyck位移,可以得到计算这些位移的周期序列的zeta函数的代数公式。我们把这个公式推广到所有的轮班。证明了所有softic - dyck位移的zeta函数是一个可计算的z -代数级数。证明了有限型dyck位移的zeta函数是一个可计算的n -代数级数,即是某种无二义上下文语言的生成级数。我们推测,该结果适用于所有的索菲-戴克位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信