Brittle Fracture of a Clapper Weldment for a Disk Valve Due to Improper Filler Metal

{"title":"Brittle Fracture of a Clapper Weldment for a Disk Valve Due to Improper Filler Metal","authors":"","doi":"10.31399/asm.fach.process.c0048767","DOIUrl":null,"url":null,"abstract":"\n The clapper in a 250 mm diam disk valve (made from ASTM A36 steel, stress relieved and cadmium plated) fractured at the welded joint between the clapper and a 20 mm diam support rod (also made of same material). The valve contained a stream of gas consisting of 55% H2S, 39% CO2, 5% H2, and 1% hydrocarbons at 40 deg C and 55 kPa during operation. Voids on the fracture surface and evidence of incomplete weld penetration were revealed by examination. Brittle fracture was indicated by the overall appearance through some fatigue beach marks were observed. Very narrow bands of high hardness were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper failed by fatigue and brittle fracture because it was welded with an incorrect filler metal. A clapper assembly was welded with a low-carbon steel filler metal, then cadmium plated.","PeriodicalId":294593,"journal":{"name":"ASM Failure Analysis Case Histories: Processing Errors and Defects","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Processing Errors and Defects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.process.c0048767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The clapper in a 250 mm diam disk valve (made from ASTM A36 steel, stress relieved and cadmium plated) fractured at the welded joint between the clapper and a 20 mm diam support rod (also made of same material). The valve contained a stream of gas consisting of 55% H2S, 39% CO2, 5% H2, and 1% hydrocarbons at 40 deg C and 55 kPa during operation. Voids on the fracture surface and evidence of incomplete weld penetration were revealed by examination. Brittle fracture was indicated by the overall appearance through some fatigue beach marks were observed. Very narrow bands of high hardness were revealed at the edges of the weld metal. It was revealed by chemical analysis of this band that a stainless steel filler metal had been used which produced mixed composition at the weld boundaries. The plating material was revealed to be nickel by chemical analysis. It was concluded that clapper failed by fatigue and brittle fracture because it was welded with an incorrect filler metal. A clapper assembly was welded with a low-carbon steel filler metal, then cadmium plated.
由于填充金属不当导致阀瓣瓣焊件脆性断裂
直径为250毫米的阀瓣阀瓣(由ASTM A36钢制成,消除应力并镀镉)在阀瓣和直径为20毫米的支撑杆(也由相同材料制成)之间的焊接接头处断裂。阀门在运行过程中,在40℃、55 kPa的条件下,含有55% H2S、39% CO2、5% H2和1%碳氢化合物的气体流。通过检查,发现了断口上的空洞和焊缝未焊透的痕迹。通过观察到一些疲劳滩痕,整体外观显示脆性断裂。焊缝金属的边缘出现了非常窄的高硬度带。对该带的化学分析表明,在焊缝边界处使用了不锈钢填充金属,产生了混合成分。经化学分析,镀层材料为镍。结果表明,阀瓣的疲劳脆性断裂是由于焊料不正确导致的。一个阀组件是用低碳钢填充金属焊接的,然后镀镉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信