Brian Jasenak, Rachel Willsey, A. Willsey, Jamie Forish
{"title":"Investigation of light output uniformity and performance using a UV transmitting glass optic for a multi-UV LED array","authors":"Brian Jasenak, Rachel Willsey, A. Willsey, Jamie Forish","doi":"10.1117/12.2209714","DOIUrl":null,"url":null,"abstract":"Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect multi-UV LED arrays. However, they don’t offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution and intensity. In this study, a UV transmitting glass formulation and secondary linear optic were designed and manufactured to demonstrate their effects on achievable irradiance intensity and uniformity. Prismatic patterning on the light source surface of the lens was used to minimize reflection losses on the incident surface of the glass. Fresnel optics were molded into the opposite side of the UV transmitting glass to control the refraction of the light and to gain the desired light intensity distribution from two multi-UV LED arrays. A 20% increase in relative irradiance was observed while maintaining the same coverage area. This work discusses the optical design and the resulting benefits of controlled light output on UV LED systems, which include reduced driving current, decreased thermal deterioration, improved energy efficiency, and longer LED lifetime.","PeriodicalId":122702,"journal":{"name":"SPIE OPTO","volume":"9768 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE OPTO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2209714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect multi-UV LED arrays. However, they don’t offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution and intensity. In this study, a UV transmitting glass formulation and secondary linear optic were designed and manufactured to demonstrate their effects on achievable irradiance intensity and uniformity. Prismatic patterning on the light source surface of the lens was used to minimize reflection losses on the incident surface of the glass. Fresnel optics were molded into the opposite side of the UV transmitting glass to control the refraction of the light and to gain the desired light intensity distribution from two multi-UV LED arrays. A 20% increase in relative irradiance was observed while maintaining the same coverage area. This work discusses the optical design and the resulting benefits of controlled light output on UV LED systems, which include reduced driving current, decreased thermal deterioration, improved energy efficiency, and longer LED lifetime.