An Intensity-augmented Ordinal Measure for Visual Correspondence

Anurag Mittal, Visvanathan Ramesh
{"title":"An Intensity-augmented Ordinal Measure for Visual Correspondence","authors":"Anurag Mittal, Visvanathan Ramesh","doi":"10.1109/CVPR.2006.56","DOIUrl":null,"url":null,"abstract":"Determining the correspondence of image patches is one of the most important problems in Computer Vision. When the intensity space is variant due to several factors such as the camera gain or gamma correction, one needs methods that are robust to such transformations. While the most common assumption is that of a linear transformation, a more general assumption is that the change is monotonic. Therefore, methods have been developed previously that work on the rankings between different pixels as opposed to the intensities themselves. In this paper, we develop a new matching method that improves upon existing methods by using a combination of intensity and rank information. The method considers the difference in the intensities of the changed pixels in order to achieve greater robustness to Gaussian noise. Furthermore, only uncorrelated order changes are considered, which makes the method robust to changes in a single or a few pixels. These properties make the algorithm quite robust to different types of noise and other artifacts such as camera shake or image compression. Experiments illustrate the potential of the approach in several different applications such as change detection and feature matching.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Determining the correspondence of image patches is one of the most important problems in Computer Vision. When the intensity space is variant due to several factors such as the camera gain or gamma correction, one needs methods that are robust to such transformations. While the most common assumption is that of a linear transformation, a more general assumption is that the change is monotonic. Therefore, methods have been developed previously that work on the rankings between different pixels as opposed to the intensities themselves. In this paper, we develop a new matching method that improves upon existing methods by using a combination of intensity and rank information. The method considers the difference in the intensities of the changed pixels in order to achieve greater robustness to Gaussian noise. Furthermore, only uncorrelated order changes are considered, which makes the method robust to changes in a single or a few pixels. These properties make the algorithm quite robust to different types of noise and other artifacts such as camera shake or image compression. Experiments illustrate the potential of the approach in several different applications such as change detection and feature matching.
视觉对应的增强序数测度
图像patch的对应关系确定是计算机视觉中的一个重要问题。当强度空间由于相机增益或伽玛校正等多种因素而变化时,需要对此类变换具有鲁棒性的方法。虽然最常见的假设是线性变换,但更一般的假设是变化是单调的。因此,以前开发的方法是针对不同像素之间的排名,而不是强度本身。在本文中,我们开发了一种新的匹配方法,通过使用强度和等级信息的组合来改进现有的方法。该方法考虑了变化像素的强度差异,以达到对高斯噪声更强的鲁棒性。此外,该方法只考虑了不相关的阶数变化,使得该方法对单个或几个像素的变化具有鲁棒性。这些特性使算法对不同类型的噪声和其他伪影(如相机抖动或图像压缩)具有相当的鲁棒性。实验证明了该方法在变化检测和特征匹配等不同应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信