{"title":"Optimum nonuniform transmultiplexer design","authors":"C.Y.-F. Ho, B. Ling, Y. Liu, P. Tam, K. Teo","doi":"10.1109/ICNNSP.2003.1279381","DOIUrl":null,"url":null,"abstract":"This paper considers an optimum nonuniform FIR transmultiplexer design subject to specifications in the frequency domain. Our objective is to minimize the sum of the ripple energy for all the individual filters, subject to the specifications on amplitude and aliasing distortions, and to the passband and stopband specifications for the individual filters. This optimum nonuniform transmultiplexer design problem can be formulated as a quadratic semi-infinite programming problem. The dual parametrization algorithm is extended to the design of this nonuniform transmultiplexer problem. If the lengths of the filters are sufficiently long and the set of decimation integers is compatible, then our algorithm guarantees that the solution obtained will give rise to the global minimum, and the required specifications are satisfied.","PeriodicalId":336216,"journal":{"name":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2003.1279381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper considers an optimum nonuniform FIR transmultiplexer design subject to specifications in the frequency domain. Our objective is to minimize the sum of the ripple energy for all the individual filters, subject to the specifications on amplitude and aliasing distortions, and to the passband and stopband specifications for the individual filters. This optimum nonuniform transmultiplexer design problem can be formulated as a quadratic semi-infinite programming problem. The dual parametrization algorithm is extended to the design of this nonuniform transmultiplexer problem. If the lengths of the filters are sufficiently long and the set of decimation integers is compatible, then our algorithm guarantees that the solution obtained will give rise to the global minimum, and the required specifications are satisfied.