Bayesian Estimation of Hyperparameters in MRI through the Maximum Evidence Method

D. E. Oliva, R. Isoardi, G. Mato
{"title":"Bayesian Estimation of Hyperparameters in MRI through the Maximum Evidence Method","authors":"D. E. Oliva, R. Isoardi, G. Mato","doi":"10.1109/SIBGRAPI.2008.5","DOIUrl":null,"url":null,"abstract":"Bayesian inference methods are commonly applied to the classification of brain magnetic resonance images (MRI). We use the maximum evidence (ME) approach to estimate the most probable parameters and hyperparameters for models that take into account discrete classes (DM) and models accounting for the partial volume effect (PVM). An approximate algorithm was developed for model optimization, since the exact image inference calculation is computationally expensive. The method was validated using simulated images and a digital phantom. We show that the evidence is a very useful figure for error prediction, which is to be maximized respect to the hyperparameters. Additionally, it provides a tool to determine the most probable model given measured data.","PeriodicalId":330622,"journal":{"name":"2008 XXI Brazilian Symposium on Computer Graphics and Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 XXI Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2008.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bayesian inference methods are commonly applied to the classification of brain magnetic resonance images (MRI). We use the maximum evidence (ME) approach to estimate the most probable parameters and hyperparameters for models that take into account discrete classes (DM) and models accounting for the partial volume effect (PVM). An approximate algorithm was developed for model optimization, since the exact image inference calculation is computationally expensive. The method was validated using simulated images and a digital phantom. We show that the evidence is a very useful figure for error prediction, which is to be maximized respect to the hyperparameters. Additionally, it provides a tool to determine the most probable model given measured data.
基于最大证据法的MRI超参数贝叶斯估计
贝叶斯推理方法是常用的脑磁共振图像分类方法。我们使用最大证据(ME)方法来估计考虑离散类(DM)和部分体积效应(PVM)的模型的最可能参数和超参数。由于精确的图像推理计算是非常昂贵的,因此提出了一种近似的模型优化算法。利用仿真图像和数字模型对该方法进行了验证。我们表明,证据是一个非常有用的数字误差预测,这是最大化的超参数方面。此外,它还提供了一种工具来确定给定测量数据的最可能模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信