An Efficient Classification Model using Fuzzy Rough Set Theory and Random Weight Neural Network

Rana Aamir Raza
{"title":"An Efficient Classification Model using Fuzzy Rough Set Theory and Random Weight Neural Network","authors":"Rana Aamir Raza","doi":"10.54692/lgurjcsit.2021.0503224","DOIUrl":null,"url":null,"abstract":"In the area of fuzzy rough set theory (FRST), researchers have gained much interest in handling the high-dimensional data. Rough set theory (RST) is one of the important tools used to pre-process the data and helps to obtain a better predictive model, but in RST, the process of discretization may loss useful information. Therefore, fuzzy rough set theory contributes well with the real-valued data. In this paper, an efficient technique is presented based on Fuzzy rough set theory (FRST) to pre-process the large-scale data sets to increase the efficacy of the predictive model. Therefore, a fuzzy rough set-based feature selection (FRSFS) technique is associated with a Random weight neural network (RWNN) classifier to obtain the better generalization ability. Results on different dataset show that the proposed technique performs well and provides better speed and accuracy when compared by associating FRSFS with other machine learning classifiers (i.e., KNN, Naive Bayes, SVM, decision tree and backpropagation neural network).","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2021.0503224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the area of fuzzy rough set theory (FRST), researchers have gained much interest in handling the high-dimensional data. Rough set theory (RST) is one of the important tools used to pre-process the data and helps to obtain a better predictive model, but in RST, the process of discretization may loss useful information. Therefore, fuzzy rough set theory contributes well with the real-valued data. In this paper, an efficient technique is presented based on Fuzzy rough set theory (FRST) to pre-process the large-scale data sets to increase the efficacy of the predictive model. Therefore, a fuzzy rough set-based feature selection (FRSFS) technique is associated with a Random weight neural network (RWNN) classifier to obtain the better generalization ability. Results on different dataset show that the proposed technique performs well and provides better speed and accuracy when compared by associating FRSFS with other machine learning classifiers (i.e., KNN, Naive Bayes, SVM, decision tree and backpropagation neural network).
基于模糊粗糙集理论和随机权值神经网络的高效分类模型
在模糊粗糙集理论(FRST)领域,研究人员对高维数据的处理产生了浓厚的兴趣。粗糙集理论(RST)是对数据进行预处理的重要工具之一,有助于获得更好的预测模型,但在粗糙集理论中,离散化过程可能会丢失有用的信息。因此,模糊粗糙集理论可以很好地处理实值数据。本文提出了一种基于模糊粗糙集理论(FRST)的大规模数据集预处理技术,以提高预测模型的有效性。因此,基于模糊粗糙集的特征选择(FRSFS)技术与随机加权神经网络(RWNN)分类器相结合,以获得更好的泛化能力。在不同数据集上的结果表明,与其他机器学习分类器(即KNN、朴素贝叶斯、支持向量机、决策树和反向传播神经网络)相关联的FRSFS相比,该技术表现良好,并且具有更好的速度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信