Murilo Santos, Albert Hung-Ren Ko, L. S. Oliveira, R. Sabourin, Alessandro Lameiras Koerich, A. Britto
{"title":"Evaluation of Different Strategies to Optimize an HMM-Based Character Recognition System","authors":"Murilo Santos, Albert Hung-Ren Ko, L. S. Oliveira, R. Sabourin, Alessandro Lameiras Koerich, A. Britto","doi":"10.1109/ICDAR.2009.230","DOIUrl":null,"url":null,"abstract":"Different strategies for combination of complementary features in an HMM-based method for handwritten character recognition are evaluated. In addition, a noise reduction method is proposed to deal with the negative impact of low probability symbols in the training database. New sequences of observations are generated based on the original ones, but considering a noise reduction process. The experimental results based on 52 classes of alphabetic characters and more than 23,000 samples have shown that the strategies proposed to optimize the HMM-based recognition method are very promising.","PeriodicalId":433762,"journal":{"name":"2009 10th International Conference on Document Analysis and Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2009.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Different strategies for combination of complementary features in an HMM-based method for handwritten character recognition are evaluated. In addition, a noise reduction method is proposed to deal with the negative impact of low probability symbols in the training database. New sequences of observations are generated based on the original ones, but considering a noise reduction process. The experimental results based on 52 classes of alphabetic characters and more than 23,000 samples have shown that the strategies proposed to optimize the HMM-based recognition method are very promising.