Gene Set- and Pathway- Centered Knowledge Discovery Assigns Transcriptional Activation Patterns in Brain, Blood, and Colon Cancer: A Bioinformatics Perspective

L. Nersisyan, H. Löffler-Wirth, A. Arakelyan, H. Binder
{"title":"Gene Set- and Pathway- Centered Knowledge Discovery Assigns Transcriptional Activation Patterns in Brain, Blood, and Colon Cancer: A Bioinformatics Perspective","authors":"L. Nersisyan, H. Löffler-Wirth, A. Arakelyan, H. Binder","doi":"10.4018/IJKDB.2014070104","DOIUrl":null,"url":null,"abstract":"Genome-wide 'omics'-assays provide a comprehensive view on the molecular landscapes of healthy and diseased cells. Bioinformatics traditionally pursues a 'gene-centered' view by extracting lists of genes differentially expressed or methylated between healthy and diseased states. Biological knowledge mining is then performed by applying gene set techniques using libraries of functional gene sets obtained from independent studies. This analysis strategy neglects two facts: i that different disease states can be characterized by a series of functional modules of co-regulated genes and ii that the topology of the underlying regulatory networks can induce complex expression patterns that require analysis methods beyond traditional genes set techniques. The authors here provide a knowledge discovery method that overcomes these shortcomings. It combines machine learning using self-organizing maps with pathway flow analysis. It extracts and visualizes regulatory modes from molecular omics data, maps them onto selected pathways and estimates the impact of pathway-activity changes. The authors illustrate the performance of the gene set and pathway signal flow methods using expression data of oncogenic pathway activation experiments and of patient data on glioma, B-cell lymphoma and colorectal cancer.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJKDB.2014070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Genome-wide 'omics'-assays provide a comprehensive view on the molecular landscapes of healthy and diseased cells. Bioinformatics traditionally pursues a 'gene-centered' view by extracting lists of genes differentially expressed or methylated between healthy and diseased states. Biological knowledge mining is then performed by applying gene set techniques using libraries of functional gene sets obtained from independent studies. This analysis strategy neglects two facts: i that different disease states can be characterized by a series of functional modules of co-regulated genes and ii that the topology of the underlying regulatory networks can induce complex expression patterns that require analysis methods beyond traditional genes set techniques. The authors here provide a knowledge discovery method that overcomes these shortcomings. It combines machine learning using self-organizing maps with pathway flow analysis. It extracts and visualizes regulatory modes from molecular omics data, maps them onto selected pathways and estimates the impact of pathway-activity changes. The authors illustrate the performance of the gene set and pathway signal flow methods using expression data of oncogenic pathway activation experiments and of patient data on glioma, B-cell lymphoma and colorectal cancer.
基因集和通路为中心的知识发现分配转录激活模式在脑,血液和结肠癌:生物信息学的观点
全基因组“组学”分析提供了对健康和患病细胞的分子景观的全面看法。生物信息学传统上通过提取健康和患病状态之间差异表达或甲基化的基因列表来追求“以基因为中心”的观点。生物知识挖掘随后通过使用从独立研究中获得的功能基因集文库应用基因集技术进行。这种分析策略忽略了两个事实:1 .不同的疾病状态可以通过一系列共调控基因的功能模块来表征;2 .潜在调控网络的拓扑结构可以诱导复杂的表达模式,这需要传统基因集技术之外的分析方法。本文提出了一种克服这些缺点的知识发现方法。它结合了使用自组织地图的机器学习和路径流分析。它从分子组学数据中提取和可视化调节模式,将它们映射到选定的通路上,并估计通路活性变化的影响。作者利用肿瘤通路激活实验的表达数据和胶质瘤、b细胞淋巴瘤和结直肠癌的患者数据,说明了基因集和通路信号流方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信