Performance Analysis of Compressed Batch Matrix Operations on Small Matrices

B. Gravelle, B. Norris
{"title":"Performance Analysis of Compressed Batch Matrix Operations on Small Matrices","authors":"B. Gravelle, B. Norris","doi":"10.1109/HPCS48598.2019.9188206","DOIUrl":null,"url":null,"abstract":"Dense matrix computations with very small matrices present unique challenges for performance optimization and occupy and important space in many HPC computations including PDE solvers, machine learning algorithms, and Kalman filters. Using batch computation can improve their performance significantly and compressed batch (also called block-interleaved) data structures can further improve performance. In this paper we present a detailed study of how compressed batch computations use HPC hardware and how they can be most effectively tuned for cache performance.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"19 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dense matrix computations with very small matrices present unique challenges for performance optimization and occupy and important space in many HPC computations including PDE solvers, machine learning algorithms, and Kalman filters. Using batch computation can improve their performance significantly and compressed batch (also called block-interleaved) data structures can further improve performance. In this paper we present a detailed study of how compressed batch computations use HPC hardware and how they can be most effectively tuned for cache performance.
小矩阵上压缩批处理矩阵运算的性能分析
具有非常小矩阵的密集矩阵计算对性能优化提出了独特的挑战,并且在许多HPC计算中占据了重要的空间,包括PDE求解器、机器学习算法和卡尔曼滤波器。使用批处理计算可以显著提高它们的性能,压缩的批处理(也称为块交错)数据结构可以进一步提高性能。在本文中,我们详细研究了压缩批处理计算如何使用HPC硬件,以及如何最有效地调整缓存性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信