Efficient K-NN for Playlist Continuation

Domokos M. Kelen, Dániel Berecz, Ferenc Béres, A. Benczúr
{"title":"Efficient K-NN for Playlist Continuation","authors":"Domokos M. Kelen, Dániel Berecz, Ferenc Béres, A. Benczúr","doi":"10.1145/3267471.3267477","DOIUrl":null,"url":null,"abstract":"We present our solution for the RecSys Challenge 2018, which reached 9th place on the main track leaderboard of the competition. We developed a light-weight playlist-based nearest neighbor method to complete music playlists by using the playlist-track matrix along with track and playlist metadata. Our solution uses a number of domain specific heuristics for improving recommendation quality. One major advantage of our approach is its low computational resource use: our final solution can be computed on a traditional desktop computer within an hour.","PeriodicalId":430663,"journal":{"name":"Proceedings of the ACM Recommender Systems Challenge 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Recommender Systems Challenge 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3267471.3267477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present our solution for the RecSys Challenge 2018, which reached 9th place on the main track leaderboard of the competition. We developed a light-weight playlist-based nearest neighbor method to complete music playlists by using the playlist-track matrix along with track and playlist metadata. Our solution uses a number of domain specific heuristics for improving recommendation quality. One major advantage of our approach is its low computational resource use: our final solution can be computed on a traditional desktop computer within an hour.
播放列表延续的高效K-NN算法
我们为2018年RecSys挑战赛提出了我们的解决方案,该方案在比赛的主赛道排行榜上排名第九。我们开发了一个轻量级的基于播放列表的最近邻方法,通过使用播放列表-曲目矩阵以及曲目和播放列表元数据来完成音乐播放列表。我们的解决方案使用了许多特定于领域的启发式方法来提高推荐质量。我们的方法的一个主要优点是它的低计算资源使用:我们的最终解决方案可以在一个小时内在传统的桌面计算机上计算出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信