Graph Traversals as Universal Constructions

Siddharth Bhaskar, R. Kaarsgaard
{"title":"Graph Traversals as Universal Constructions","authors":"Siddharth Bhaskar, R. Kaarsgaard","doi":"10.4230/LIPIcs.MFCS.2021.17","DOIUrl":null,"url":null,"abstract":"We exploit a decomposition of graph traversals to give a novel characterization of depth-first and breadth-first traversals as universal constructions. Specifically, we introduce functors from two different categories of edge-ordered directed graphs into two different categories of transitively closed edge-ordered graphs; one defines the lexicographic depth-first traversal and the other the lexicographic breadth-first traversal. We show that each functor factors as a composition of universal constructions, and that the usual presentation of traversals as linear orders on vertices can be recovered with the addition of an inclusion functor. Finally, we raise the question of to what extent we can recover search algorithms from the categorical description of the traversal they compute.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2021.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We exploit a decomposition of graph traversals to give a novel characterization of depth-first and breadth-first traversals as universal constructions. Specifically, we introduce functors from two different categories of edge-ordered directed graphs into two different categories of transitively closed edge-ordered graphs; one defines the lexicographic depth-first traversal and the other the lexicographic breadth-first traversal. We show that each functor factors as a composition of universal constructions, and that the usual presentation of traversals as linear orders on vertices can be recovered with the addition of an inclusion functor. Finally, we raise the question of to what extent we can recover search algorithms from the categorical description of the traversal they compute.
图遍历作为通用结构
我们利用图遍历的分解,给出了深度优先和宽度优先遍历作为通用结构的新特征。具体来说,我们将两种不同类别的边有序图的函子引入到两种不同类别的传递闭边有序图中;一个定义字典顺序的深度优先遍历,另一个定义字典顺序的宽度优先遍历。我们证明了每个函子因子都是通用结构的组合,并且通常的遍历表示为顶点上的线性顺序,可以通过添加包含函子来恢复。最后,我们提出了一个问题,即我们可以在多大程度上从搜索算法计算的遍历的分类描述中恢复搜索算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信