Filter-based calibration for an IMU and multi-camera system

K. Brink, A. Soloviev
{"title":"Filter-based calibration for an IMU and multi-camera system","authors":"K. Brink, A. Soloviev","doi":"10.1109/PLANS.2012.6236950","DOIUrl":null,"url":null,"abstract":"Vision-aided Inertial Navigation Systems (vINS) are capable of providing accurate six degree of freedom (6DoF) state estimation for autonomous vehicles (AVs) in the absence of Global Positioning System (GPS) and other global references. Features observed by a camera can be combined with measurements from an inertial measurement unit (IMU) in a filter to estimate the desired vehicle states. To do so, the rigid body transformation between cameras and the IMU must be known with high precision. Extended Kalman filters (EKF) and Unscented Kalman filters (UKF) have been used to calibrate camera and IMU systems requiring only a simple calibration target and moderate IMU-camera motion. This paper focuses on indoor applications where it is assumed a user is able to easily manipulate the sensor package. We extend the UKF filter to calibrate an IMU paired with an arbitrary number of cameras, with or without overlapping fields of view.","PeriodicalId":282304,"journal":{"name":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2012.6236950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Vision-aided Inertial Navigation Systems (vINS) are capable of providing accurate six degree of freedom (6DoF) state estimation for autonomous vehicles (AVs) in the absence of Global Positioning System (GPS) and other global references. Features observed by a camera can be combined with measurements from an inertial measurement unit (IMU) in a filter to estimate the desired vehicle states. To do so, the rigid body transformation between cameras and the IMU must be known with high precision. Extended Kalman filters (EKF) and Unscented Kalman filters (UKF) have been used to calibrate camera and IMU systems requiring only a simple calibration target and moderate IMU-camera motion. This paper focuses on indoor applications where it is assumed a user is able to easily manipulate the sensor package. We extend the UKF filter to calibrate an IMU paired with an arbitrary number of cameras, with or without overlapping fields of view.
基于滤波器的IMU和多相机系统标定
视觉辅助惯性导航系统(vINS)能够在没有全球定位系统(GPS)和其他全局参考的情况下为自动驾驶汽车(av)提供准确的六自由度(6DoF)状态估计。相机观察到的特征可以与滤波器中惯性测量单元(IMU)的测量相结合,以估计所需的车辆状态。要做到这一点,必须高精度地知道相机和IMU之间的刚体变换。扩展卡尔曼滤波器(EKF)和Unscented卡尔曼滤波器(UKF)已被用于校准摄像机和IMU系统,只需要一个简单的校准目标和适度的IMU摄像机运动。本文主要关注室内应用,假设用户能够轻松操作传感器包。我们扩展了UKF滤波器来校准与任意数量的相机配对的IMU,有或没有重叠的视场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信