Chigbogu Ozoegwu, S. Omenyi, C. Achebe, C. F. Uzoh
{"title":"Effect of Modal Parameters on Both Delay-Independent and Global Stability of Turning Process","authors":"Chigbogu Ozoegwu, S. Omenyi, C. Achebe, C. F. Uzoh","doi":"10.5923/J.JMEA.20120206.06","DOIUrl":null,"url":null,"abstract":"The model fo r regenerative vibration of linear orthogonal turning process is a second order time -invariant delay differential equation. Stability analysis resulted in lobes that combine to give transition curve that separates the paramete r space of spindle speed and depth of cut into stable and unstable subspaces. It is found that there is a subspace of the stable subspace in which the turning process is delay-independent stable. The size of this subspace is found to be a function of modal parameters and increases with damping ratio of the tool. Non -linear analysis of turning by some investigators suggests that subcritical bifurcations always occur thus the need to design a portion of the subspace of delay -independent stability for global stability. The subspace of global stability is also theoretically and quantitatively demonstrated to increase faster than the driving increase in damp ing ratio.","PeriodicalId":383435,"journal":{"name":"Journal of Mechanical Engineering and Automation","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5923/J.JMEA.20120206.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The model fo r regenerative vibration of linear orthogonal turning process is a second order time -invariant delay differential equation. Stability analysis resulted in lobes that combine to give transition curve that separates the paramete r space of spindle speed and depth of cut into stable and unstable subspaces. It is found that there is a subspace of the stable subspace in which the turning process is delay-independent stable. The size of this subspace is found to be a function of modal parameters and increases with damping ratio of the tool. Non -linear analysis of turning by some investigators suggests that subcritical bifurcations always occur thus the need to design a portion of the subspace of delay -independent stability for global stability. The subspace of global stability is also theoretically and quantitatively demonstrated to increase faster than the driving increase in damp ing ratio.