A Spam Classification Method Based on Naive Bayes

Fangyi Ye, Guanxuan Chen, Qiang Liu, Lei Zhang, Qinhui Qi, Bo Hu, Xiaoshi Fan
{"title":"A Spam Classification Method Based on Naive Bayes","authors":"Fangyi Ye, Guanxuan Chen, Qiang Liu, Lei Zhang, Qinhui Qi, Bo Hu, Xiaoshi Fan","doi":"10.1109/ITOEC53115.2022.9734386","DOIUrl":null,"url":null,"abstract":"Currently, spam will do everything possible to bypass or destroy the spam classifier. This paper proposes a naive Bayesian spam classification method, and designs Bernoulli naive Bayes algorithm and polynomial naive Bayes algorithm to classify English spam and Chinese spam respectively. Experiments show that the method proposed in this paper has a high precision rate and recall rate, and can classify spam simply, accurately and efficiently.","PeriodicalId":127300,"journal":{"name":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITOEC53115.2022.9734386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Currently, spam will do everything possible to bypass or destroy the spam classifier. This paper proposes a naive Bayesian spam classification method, and designs Bernoulli naive Bayes algorithm and polynomial naive Bayes algorithm to classify English spam and Chinese spam respectively. Experiments show that the method proposed in this paper has a high precision rate and recall rate, and can classify spam simply, accurately and efficiently.
基于朴素贝叶斯的垃圾邮件分类方法
目前,垃圾邮件将尽一切可能绕过或破坏垃圾邮件分类器。本文提出了一种朴素贝叶斯垃圾邮件分类方法,并设计了伯努利朴素贝叶斯算法和多项式朴素贝叶斯算法分别对英文垃圾邮件和中文垃圾邮件进行分类。实验结果表明,该方法具有较高的准确率和召回率,能够对垃圾邮件进行简单、准确、高效的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信