Hierarchical model predictive control for managing agricultural greenhouse systems

Zhiling Ren, Yun Dong, Dong Lin
{"title":"Hierarchical model predictive control for managing agricultural greenhouse systems","authors":"Zhiling Ren, Yun Dong, Dong Lin","doi":"10.1109/IAI55780.2022.9976658","DOIUrl":null,"url":null,"abstract":"This paper presents a hierarchical model predictive control method for the management of agricultural greenhouse systems. The proposed approach consists of an optimization layer and a control layer. At the optimization layer, an optimization strategy is proposed to minimize the total costs of greenhouse heating/cooling, ventilation, irrigation, carbon dioxide (CO2) supply and carbon emissions while maintaining greenhouse environmental factors, including temperature, humidity and CO2 concentration, within specified ranges. The proposed method is compared with a baseline method that minimizes greenhouse operating costs. At the control layer, a model predictive controller (MPC) is designed to track the reference trajectory obtained from the optimization layer. Simulation results show that the proposed method can reduce the total cost by R827 and the carbon emissions by 1.16 tons compared with the baseline method. Moreover, the designed MPC controller is verified to have good control performance under different levels of system disturbances. The proposed method is helpful to realize cleaner production and sustainable development of agricultural greenhouses.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a hierarchical model predictive control method for the management of agricultural greenhouse systems. The proposed approach consists of an optimization layer and a control layer. At the optimization layer, an optimization strategy is proposed to minimize the total costs of greenhouse heating/cooling, ventilation, irrigation, carbon dioxide (CO2) supply and carbon emissions while maintaining greenhouse environmental factors, including temperature, humidity and CO2 concentration, within specified ranges. The proposed method is compared with a baseline method that minimizes greenhouse operating costs. At the control layer, a model predictive controller (MPC) is designed to track the reference trajectory obtained from the optimization layer. Simulation results show that the proposed method can reduce the total cost by R827 and the carbon emissions by 1.16 tons compared with the baseline method. Moreover, the designed MPC controller is verified to have good control performance under different levels of system disturbances. The proposed method is helpful to realize cleaner production and sustainable development of agricultural greenhouses.
农业大棚系统管理的层次模型预测控制
提出了一种用于农业大棚系统管理的层次模型预测控制方法。该方法由优化层和控制层组成。在优化层,提出了一种优化策略,使温室采暖/制冷、通风、灌溉、二氧化碳供应和碳排放的总成本最小化,同时使温室环境因子(包括温度、湿度和二氧化碳浓度)保持在指定范围内。将提出的方法与最小化温室运行成本的基线方法进行了比较。在控制层,设计了模型预测控制器(MPC)来跟踪从优化层得到的参考轨迹。仿真结果表明,与基准方法相比,该方法可降低总成本827 r8,减少碳排放1.16 t。此外,所设计的MPC控制器在不同程度的系统扰动下都具有良好的控制性能。该方法有助于实现农业大棚的清洁生产和可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信