Recognition and classification of geometric shapes using neural networks

S. Spasojevic, M. Šušić, Z. Durovic
{"title":"Recognition and classification of geometric shapes using neural networks","authors":"S. Spasojevic, M. Šušić, Z. Durovic","doi":"10.1109/NEUREL.2012.6419966","DOIUrl":null,"url":null,"abstract":"The research presented in this paper refers to classification of geometric shapes (cubes, pyramids and cylinders) using multilayer neural network. The input data of the algorithm are the images of shapes placed in different positions and distances from the camera. The classification is based on feature vectors that are obtained using methods of digital image processing. Feature vectors are inputs of neural network. Supervised training of neural network is performed. Reduction algorithm was used in aim of dimension reduction of feature vectors, so the classification results can be displayed graphically. Recognition and classification of geometric shapes may be of interest for realization of many robotic tasks, especially those related to catching of objects with robotic arm or movement of a robot with a set of obstacles.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The research presented in this paper refers to classification of geometric shapes (cubes, pyramids and cylinders) using multilayer neural network. The input data of the algorithm are the images of shapes placed in different positions and distances from the camera. The classification is based on feature vectors that are obtained using methods of digital image processing. Feature vectors are inputs of neural network. Supervised training of neural network is performed. Reduction algorithm was used in aim of dimension reduction of feature vectors, so the classification results can be displayed graphically. Recognition and classification of geometric shapes may be of interest for realization of many robotic tasks, especially those related to catching of objects with robotic arm or movement of a robot with a set of obstacles.
基于神经网络的几何形状识别与分类
本文的研究是利用多层神经网络对几何形状(立方体、金字塔和圆柱体)进行分类。该算法的输入数据是放置在不同位置和距离相机的形状图像。分类是基于使用数字图像处理方法获得的特征向量。特征向量是神经网络的输入。对神经网络进行监督训练。采用约简算法对特征向量进行降维,使分类结果以图形化的方式显示。几何形状的识别和分类可能对许多机器人任务的实现感兴趣,特别是那些与机械臂捕获物体或机器人与一系列障碍物的运动有关的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信