An Automatic Algorithm for Tracking Small Intestine in CT Enterography

J. Horáček, M. Horák, J. Kolomazník, J. Pelikán
{"title":"An Automatic Algorithm for Tracking Small Intestine in CT Enterography","authors":"J. Horáček, M. Horák, J. Kolomazník, J. Pelikán","doi":"10.1109/DICTA.2015.7371228","DOIUrl":null,"url":null,"abstract":"In this paper we present an automatic algorithm to segment and track small intestine from CT enterography. The algorithm can handle noisy thin-slice data and is adaptable to the greatly varying spatial structure of the organ. Our approach automatically segments all well-distended parts and performs tracking of the intestinal path. Pre-filtered data are segmented with watershed segmentation and then a kNN-based probability function enhances whole parts of the lumen. Post-process based on a robust form of region growing is then used for path tracking.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present an automatic algorithm to segment and track small intestine from CT enterography. The algorithm can handle noisy thin-slice data and is adaptable to the greatly varying spatial structure of the organ. Our approach automatically segments all well-distended parts and performs tracking of the intestinal path. Pre-filtered data are segmented with watershed segmentation and then a kNN-based probability function enhances whole parts of the lumen. Post-process based on a robust form of region growing is then used for path tracking.
CT小肠造影中小肠的自动跟踪算法
本文提出了一种基于CT小肠造影的小肠自动分割和跟踪算法。该算法能处理有噪声的薄层数据,并能适应器官空间结构的巨大变化。我们的方法自动分割所有膨胀良好的部分,并对肠道路径进行跟踪。用分水岭分割对预滤波后的数据进行分割,然后利用基于knn的概率函数对流腔的整体部分进行增强。然后使用基于鲁棒区域增长形式的后处理进行路径跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信