Processing polymer dielectrics for improved performance of organic field-effect transistors

S. Guha
{"title":"Processing polymer dielectrics for improved performance of organic field-effect transistors","authors":"S. Guha","doi":"10.1117/12.2594377","DOIUrl":null,"url":null,"abstract":"The charge carrier mobility in organic field-effect transistors (FETs) may be enhanced by a few orders of magnitude by an appropriate choice of the dielectric layer. Polymer ferroelectric dielectrics with their high dielectric constants are attractive for low-operating voltage FETs. However, due to the dynamic coupling of the charge carriers to the electronic polarization at the semiconductor-dielectric interface, polymer ferroelectric based organic FETs may result in low carrier mobilities. Selective electrical poling of the ferroelectric dielectric, poly(vinylidene fluoride trifluorethylene) (PVDF-TrFE), is seen to greatly improve the performance of small molecule and donor-acceptor copolymer based FETs [1]. A combination of vertical and lateral poling of the PVDF-TrFE layer, which reduces the gate leakage current as well as mitigates polarization fluctuation driven transport, yields carrier mobilities upwards of 1 cm2/Vs in TIPS-pentacene and 0.5 cm2/Vs in diketopyrrolopyrrole based FETs under ambient conditions [2]. Other strategies for improving the performance of FETs involve dissolving the ferroelectric polymer in high dipole moment solvents and adding thin polymer buffer layers. The incorporation of magnetic nanoparticles in non-ferroelectric dielectrics is yet another approach for enhancing the dielectric constant. Ferrite nanoparticles with biomimetic peptide nanostructures as gate dielectrics have ramifications in low-operating voltage organic FETs [3]. \n\nThis work was supported by National Science Foundation under Grant No. ECCS-1707588\n\n[1] Laudari et al. Adv. Mater. Interfaces 6, 1801787 (2019).\n[2] Laudari et al. ACS Appl. Mater. Interfaces 12, 26757 (2020).\n[3] Khanra et al. ACS Appl. Nano Mater 1, 1175 (2018).","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Field-Effect Transistors XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The charge carrier mobility in organic field-effect transistors (FETs) may be enhanced by a few orders of magnitude by an appropriate choice of the dielectric layer. Polymer ferroelectric dielectrics with their high dielectric constants are attractive for low-operating voltage FETs. However, due to the dynamic coupling of the charge carriers to the electronic polarization at the semiconductor-dielectric interface, polymer ferroelectric based organic FETs may result in low carrier mobilities. Selective electrical poling of the ferroelectric dielectric, poly(vinylidene fluoride trifluorethylene) (PVDF-TrFE), is seen to greatly improve the performance of small molecule and donor-acceptor copolymer based FETs [1]. A combination of vertical and lateral poling of the PVDF-TrFE layer, which reduces the gate leakage current as well as mitigates polarization fluctuation driven transport, yields carrier mobilities upwards of 1 cm2/Vs in TIPS-pentacene and 0.5 cm2/Vs in diketopyrrolopyrrole based FETs under ambient conditions [2]. Other strategies for improving the performance of FETs involve dissolving the ferroelectric polymer in high dipole moment solvents and adding thin polymer buffer layers. The incorporation of magnetic nanoparticles in non-ferroelectric dielectrics is yet another approach for enhancing the dielectric constant. Ferrite nanoparticles with biomimetic peptide nanostructures as gate dielectrics have ramifications in low-operating voltage organic FETs [3]. This work was supported by National Science Foundation under Grant No. ECCS-1707588 [1] Laudari et al. Adv. Mater. Interfaces 6, 1801787 (2019). [2] Laudari et al. ACS Appl. Mater. Interfaces 12, 26757 (2020). [3] Khanra et al. ACS Appl. Nano Mater 1, 1175 (2018).
加工聚合物电介质以提高有机场效应晶体管的性能
在有机场效应晶体管(fet)中,适当选择介电层可使载流子迁移率提高几个数量级。聚合物铁电介质具有较高的介电常数,是低工作电压场效应管的理想材料。然而,由于载流子与半导体-介电界面电子极化的动态耦合,聚合物铁电基有机场效应管可能导致载流子迁移率低。铁电介质聚偏氟乙烯-三氟乙烯(PVDF-TrFE)的选择性电极化被认为可以大大提高基于小分子和供体-受体共聚物的fet的性能[1]。PVDF-TrFE层的垂直和横向极化结合可以减少栅极泄漏电流,并减轻极化波动驱动的输运,在环境条件下,tip -并五烯的载流子迁移率高达1 cm2/Vs,而基于二酮吡咯的fet载流子迁移率高达0.5 cm2/Vs[2]。其他提高fet性能的策略包括将铁电聚合物溶解在高偶极矩溶剂中,并添加薄的聚合物缓冲层。在非铁电介质中加入磁性纳米颗粒是提高介电常数的另一种方法。具有仿生肽纳米结构的铁氧体纳米颗粒作为栅极介质在低工作电压有机场效应管中有广泛应用[3]。本研究由国家科学基金资助,项目编号:[1]刘振华等。放置板牙。接口6,1801787 (2019).[2]Laudari等人。ACS达成。板牙。通信技术,2000,26 (3).[3]Khanra等。ACS达成。高分子材料学报,2018,39(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信