The strong exponential hierarchy collapses

Lane A. Hemachandra
{"title":"The strong exponential hierarchy collapses","authors":"Lane A. Hemachandra","doi":"10.1145/28395.28408","DOIUrl":null,"url":null,"abstract":"The polynomial hierarchy, composed of the levels P, NP, PNP, NPNP, etc., plays a central role in classifying the complexity of feasible computations. It is not known whether the polynomial hierarchy collapses. We resolve the question of collapse for an exponential-time analogue of the polynomial-time hierarchy. Composed of the levels E (i.e., ⋓c DTIME[2cn]), NE, PNE, NPNE, etc., the strong exponential hierarchy collapses to its &Dgr;2 level. E ≠ PNE = NPNE ⋓ NPNPNE ⋓ ··· Our proof stresses the use of partial census information and the exploitation of nondeterminism. Extending our techniques, we also derive new quantitative relativization results. We show that if the (weak) exponential hierarchy's &Dgr;j+1 and &Sgr;j+1 levels, respectively E&Sgr;pj and NE&Sgr;pj, do separate, this is due to the large number of queries NE makes to its &Sgr;pj database.1 Our technique provide a successful method of proving the collapse of certain complexity classes.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"190","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 190

Abstract

The polynomial hierarchy, composed of the levels P, NP, PNP, NPNP, etc., plays a central role in classifying the complexity of feasible computations. It is not known whether the polynomial hierarchy collapses. We resolve the question of collapse for an exponential-time analogue of the polynomial-time hierarchy. Composed of the levels E (i.e., ⋓c DTIME[2cn]), NE, PNE, NPNE, etc., the strong exponential hierarchy collapses to its &Dgr;2 level. E ≠ PNE = NPNE ⋓ NPNPNE ⋓ ··· Our proof stresses the use of partial census information and the exploitation of nondeterminism. Extending our techniques, we also derive new quantitative relativization results. We show that if the (weak) exponential hierarchy's &Dgr;j+1 and &Sgr;j+1 levels, respectively E&Sgr;pj and NE&Sgr;pj, do separate, this is due to the large number of queries NE makes to its &Sgr;pj database.1 Our technique provide a successful method of proving the collapse of certain complexity classes.
强指数层次结构崩溃
由P、NP、PNP、NPNP等层次组成的多项式层次在可行计算复杂度的分类中起着核心作用。尚不清楚多项式层次结构是否崩溃。我们解决了多项式时间层次的指数时间模拟的崩溃问题。强指数层次由E(即⋓c DTIME[2cn])、NE、PNE、NPNE等层组成,坍塌为其&Dgr;2层。E≠PNE = NPNE⋓NPNPNE⋓···我们的证明强调使用部分人口普查信息和利用非确定性。我们还扩展了我们的技术,得出了新的定量相对论化结果。我们表明,如果(弱)指数层次的&Dgr;j+1和&Sgr;j+1层次,分别为E&Sgr;pj和NE&Sgr;pj,确实是分开的,这是由于NE对其&Sgr;pj数据库进行了大量查询我们的技术提供了一种成功的方法来证明某些复杂性类的崩溃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信