Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer

T. Shimokawabe, T. Aoki, T. Takaki, Toshio Endo, A. Yamanaka, N. Maruyama, Akira Nukada, S. Matsuoka
{"title":"Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer","authors":"T. Shimokawabe, T. Aoki, T. Takaki, Toshio Endo, A. Yamanaka, N. Maruyama, Akira Nukada, S. Matsuoka","doi":"10.1145/2063384.2063388","DOIUrl":null,"url":null,"abstract":"The mechanical properties of metal materials largely depend on their intrinsic internal microstructures. To develop engineering materials with the expected properties, predicting patterns in solidified metals would be indispensable. The phase-field simulation is the most powerful method known to simulate the micro-scale dendritic growth during solidification in a binary alloy. To evaluate the realistic description of solidification, however, phase-field simulation requires computing a large number of complex nonlinear terms over a fine-grained grid. Due to such heavy computational demand, previous work on simulating three-dimensional solidification with phase-field methods was successful only in describing simple shapes. Our new simulation techniques achieved scales unprecedentedly large, sufficient for handling complex dendritic structures required in material science. Our simulations on the GPU-rich TSUBAME 2.0 super- computer at the Tokyo Institute of Technology have demonstrated good weak scaling and achieved 1.017 PFlops in single precision for our largest configuration, using 4,000 CPUs along with 16,000 CPU cores.","PeriodicalId":358797,"journal":{"name":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"200","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063384.2063388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 200

Abstract

The mechanical properties of metal materials largely depend on their intrinsic internal microstructures. To develop engineering materials with the expected properties, predicting patterns in solidified metals would be indispensable. The phase-field simulation is the most powerful method known to simulate the micro-scale dendritic growth during solidification in a binary alloy. To evaluate the realistic description of solidification, however, phase-field simulation requires computing a large number of complex nonlinear terms over a fine-grained grid. Due to such heavy computational demand, previous work on simulating three-dimensional solidification with phase-field methods was successful only in describing simple shapes. Our new simulation techniques achieved scales unprecedentedly large, sufficient for handling complex dendritic structures required in material science. Our simulations on the GPU-rich TSUBAME 2.0 super- computer at the Tokyo Institute of Technology have demonstrated good weak scaling and achieved 1.017 PFlops in single precision for our largest configuration, using 4,000 CPUs along with 16,000 CPU cores.
在TSUBAME 2.0超级计算机上进行枝晶凝固的pb级相场模拟
金属材料的力学性能在很大程度上取决于其内部的微观组织。为了开发具有预期性能的工程材料,预测凝固金属中的模式是必不可少的。相场模拟是目前已知的最有效的模拟二元合金凝固过程中微观枝晶生长的方法。然而,为了评估凝固的真实描述,相场模拟需要在细粒度网格上计算大量复杂的非线性项。由于计算量大,以前用相场法模拟三维凝固的工作只能成功地描述简单的形状。我们的新模拟技术达到了前所未有的规模,足以处理材料科学中需要的复杂枝晶结构。我们在东京工业大学的gpu丰富的TSUBAME 2.0超级计算机上的模拟显示了良好的弱缩放,并在我们最大的配置下实现了1.017 PFlops的单精度,使用了4,000个CPU和16,000个CPU内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信