CNN and GRU combination scheme for Bearing Anomaly Detection in Rotating Machinery Health Monitoring

Kwangsuk Lee, Jae-Kyeong Kim, Jaehyong Kim, K. Hur, Hagbae Kim
{"title":"CNN and GRU combination scheme for Bearing Anomaly Detection in Rotating Machinery Health Monitoring","authors":"Kwangsuk Lee, Jae-Kyeong Kim, Jaehyong Kim, K. Hur, Hagbae Kim","doi":"10.1109/ICKII.2018.8569155","DOIUrl":null,"url":null,"abstract":"This paper proposes a Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) combination scheme for anomaly detection to train feature extraction and to test anomaly prediction by using Stacked Convolutional Neural Networks (S-CNNs), Stacked Gated Recurrent Units (S-GRUs) as the typical model of RNNs, and a linear regression layer. In this proposed model, the S-CNNs layers firstly capture spatial feature extraction of the input sequence data of vibration sensor, and the result is used to temporal feature learning secondly with the S-GRUs. After this procedure, finally a regression layer predicts an anomaly detection. The experimental results of bearing data in NASA prognostics data repository not only show the accuracy of the proposed model in anomaly prediction for rotating machinery diagnostics, but also suggest the better performance than other state-of-the-art algorithms such as a plain RNN and GRU of the individual model.","PeriodicalId":170587,"journal":{"name":"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKII.2018.8569155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper proposes a Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) combination scheme for anomaly detection to train feature extraction and to test anomaly prediction by using Stacked Convolutional Neural Networks (S-CNNs), Stacked Gated Recurrent Units (S-GRUs) as the typical model of RNNs, and a linear regression layer. In this proposed model, the S-CNNs layers firstly capture spatial feature extraction of the input sequence data of vibration sensor, and the result is used to temporal feature learning secondly with the S-GRUs. After this procedure, finally a regression layer predicts an anomaly detection. The experimental results of bearing data in NASA prognostics data repository not only show the accuracy of the proposed model in anomaly prediction for rotating machinery diagnostics, but also suggest the better performance than other state-of-the-art algorithms such as a plain RNN and GRU of the individual model.
旋转机械健康监测中轴承异常检测的CNN和GRU组合方案
本文提出了一种卷积神经网络(CNN)和门控循环单元(GRU)相结合的异常检测方案,利用堆叠卷积神经网络(s -CNN)、堆叠门控循环单元(s -GRU)作为rnn的典型模型,以及线性回归层来训练特征提取和测试异常预测。在该模型中,s - cnn层首先捕获振动传感器输入序列数据的空间特征提取,然后将结果用于s - gru的时间特征学习。在此过程之后,最后一个回归层预测异常检测。NASA预测数据库中轴承数据的实验结果不仅表明了该模型在旋转机械诊断异常预测中的准确性,而且表明该模型的性能优于单个模型的普通RNN和GRU等先进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信