Monte Carlo Methods for Randomized Likelihood Decoding

Alankrita Bhatt, Jiun-Ting Huang, Young-Han Kim, J. Ryu, P. Sen
{"title":"Monte Carlo Methods for Randomized Likelihood Decoding","authors":"Alankrita Bhatt, Jiun-Ting Huang, Young-Han Kim, J. Ryu, P. Sen","doi":"10.1109/ALLERTON.2018.8636049","DOIUrl":null,"url":null,"abstract":"A randomized decoder that generates the message estimate according to the posterior distribution is known to achieve the reliability comparable to that of the maximum a posteriori probability decoder. With a goal of practical implementations of such a randomized decoder, several Monte Carlo techniques, such as rejection sampling, Gibbs sampling, and the Metropolis algorithm, are adapted to the problem of efficient sampling from the posterior distribution. Analytical and experimental results compare the complexity and performance of these Monte Carlo decoders for simple linear codes and the binary symmetric channel.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A randomized decoder that generates the message estimate according to the posterior distribution is known to achieve the reliability comparable to that of the maximum a posteriori probability decoder. With a goal of practical implementations of such a randomized decoder, several Monte Carlo techniques, such as rejection sampling, Gibbs sampling, and the Metropolis algorithm, are adapted to the problem of efficient sampling from the posterior distribution. Analytical and experimental results compare the complexity and performance of these Monte Carlo decoders for simple linear codes and the binary symmetric channel.
随机似然解码的蒙特卡罗方法
已知根据后验分布生成消息估计的随机解码器可实现与最大后验概率解码器相当的可靠性。为了实现这样一个随机解码器的实际目标,一些蒙特卡罗技术,如拒绝抽样、吉布斯抽样和Metropolis算法,都适用于从后验分布中有效抽样的问题。分析和实验结果比较了这些蒙特卡罗解码器在简单线性码和二进制对称信道下的复杂度和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信